21 research outputs found

    Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity

    Get PDF
    Modeling dislocation multiplication due to interaction and reactions on a mesoscopic scale is an important task for the physically meaningful description of stage II hardening in face centered cubic crystalline materials. In recent Discrete Dislocation Dynamics simulations it is observed that dislocation multiplication is exclusively the result of mechanisms, which involve dislocation reactions between different slip systems. These findings contradict multiplication models in dislocation based continuum theories, in which density increase is related to plastic slip on the same slip system. An application of these models for the density evolution on individual slip systems results in self-replication of dislocation density. We introduce a formulation of dislocation multiplication in a dislocation based continuum formulation of plasticity derived from a mechanism-based homogenization of cross-slip and glissile reactions in three-dimensional face-centered cubic systems. As a key feature, the presented model includes the generation of dislocations based on an interplay of dislocation density on different slip systems. This particularly includes slip systems with vanishing shear stress. The results show, that the proposed dislocation multiplication formulation allows for a physically meaningful microstructural evolution without self-replication of dislocations density. The results are discussed in comparison to discrete dislocation dynamics simulations exposing the coupling of different slip systems as the central characteristic for the increase of dislocation density on active and inactive slip systems. (C) 2019 Elsevier Ltd. All rights reserved

    Data-driven exploration and continuum modeling of dislocation networks

    Get PDF
    The microstructural origin of strain hardening during plastic deformation in stage II deformation of face-centered cubic (fcc) metals can be attributed to the increase in dislocation density resulting in a formation of dislocation networks. Although this is a well known relation, the complexity of dislocation multiplication processes and details about the formation of dislocation networks have recently been revealed by discrete dislocation dynamics (DDD) simulations. It has been observed that dislocations, after being generated by multiplication mechanisms, show a limited expansion within their slip plane before they get trapped in the network by dislocation reactions. This mechanism involves multiple slip systems and results in a heterogeneous dislocation network, which is not reflected in most dislocation-based continuum models. We approach the continuum modeling of dislocation networks by using data science methods to provide a link between discrete dislocations and the continuum level. For this purpose, we identify relevant correlations that feed into a model for dislocation networks in a dislocation-based continuum theory of plasticity. As a key feature, the model combines the dislocation multiplication with the limitation of the travel distance of dislocations by formation of stable dislocation junctions. The effective mobility of the network is determined by a range of dislocation spacings which reproduces the scattering travel distances of generated dislocation as observed in DDD. The model is applied to a high-symmetry fcc loading case and compared to DDD simulations. The results show a physically meaningful microstructural evolution, where the generation of new dislocations by multiplication mechanisms is counteracted by a formation of a stable dislocation network. In conjunction with DDD, we observe a steady state interplay of the different mechanisms

    Statistical analysis of discrete dislocation dynamics simulations: initial structures, cross-slip and microstructure evolution

    Get PDF
    Over the past decades, discrete dislocation dynamics simulations have been shown to reliably predict the evolution of dislocation microstructures for micrometer-sized metallic samples. Such simulations provide insight into the governing deformation mechanisms and the interplay between different physical phenomena such as dislocation reactions or cross-slip. This work is focused on a detailed analysis of the influence of the cross-slip on the evolution of dislocation systems. A tailored data mining strategy using the \u27discrete-to-continuous (D2C) framework\u27 allows to quantify differences and to quantitatively compare dislocation structures. We analyze the quantitative effects of the cross-slip on the microstructure in the course of a tensile test and a subsequent relaxation to present the role of cross-slip in the microstructure evolution. The precision of the extracted quantitative information using D2C strongly depends on the resolution of the domain averaging. We also analyze how the resolution of the averaging influences the distribution of total dislocation density and curvature fields of the specimen. Our analyzes are important approaches for interpreting the resulting structures calculated by dislocation dynamics simulations

    Dislocation multiplication in stage II deformation of fcc multi-slip single crystals

    No full text
    Dislocation multiplication in plasticity research is often connected to the picture of a Frank-Read source. Although it is known that this picture is not applicable after easy glide deformation, plasticity theories often assume Frank-Read-type models for dislocation multiplication. By analyzing discrete dislocation dynamics simulations in a bulk like setting, a new view on dislocation multiplication is presented. It is observed that only two mechanisms provide a source for dislocations: cross-slip and glissile junctions. Both source mechanisms involve a change of glide system and transfer of dislocation density (line length) from the primary dislocation(s) slip system(s) to the one of the new dislocation. The motion of dislocations is found to be highly restricted by other dislocations and therefore the contribution to plastic deformation of each individual dislocation is small. Also a substantial fraction of the physical dislocation line length is annihilated by the collinear reaction, lowering dislocation storage during plastic deformation. Furthermore, multiplication events involve the loss of a substantial amount of dislocation length and curvature (sudden changes in line orientation) due to the topology changes in the dislocation network of the respective mechanisms. The findings are discussed in light of continuum dislocation theories, which currently barely account for dislocation density transfer to other systems and the limited contribution of plastic strain from individual dislocations. (C) 2018 Elsevier Ltd. All rights reserved

    Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity

    No full text
    Modeling dislocation multiplication due to interaction and reactions on a mesoscopic scale is an important task for the physically meaningful description of stage II hardening in face centered cubic crystalline materials. In recent Discrete Dislocation Dynamics simulations it is observed that dislocation multiplication is exclusively the result of mechanisms, which involve dislocation reactions between different slip systems. These findings contradict multiplication models in dislocation based continuum theories, in which density increase is related to plastic slip on the same slip system. An application of these models for the density evolution on individual slip systems results in self-replication of dislocation density. We introduce a formulation of dislocation multiplication in a dislocation based continuum formulation of plasticity derived from a mechanism-based homogenization of cross-slip and glissile reactions in three-dimensional face-centered cubic systems. As a key feature, the presented model includes the generation of dislocations based on an interplay of dislocation density on different slip systems. This particularly includes slip systems with vanishing shear stress. The results show, that the proposed dislocation multiplication formulation allows for a physically meaningful microstructural evolution without self-replication of dislocations density. The results are discussed in comparison to discrete dislocation dynamics simulations exposing the coupling of different slip systems as the central characteristic for the increase of dislocation density on active and inactive slip systems. (C) 2019 Elsevier Ltd. All rights reserved

    Submolecular organization of DMPA in surface monolayers: beyond the two-layer model

    No full text
    AbstractA new approach to the data refinement of X-ray reflection measurements from lipid surface monolayers, applied to DMPA on pure water, reveals the structural organization of the lipid in unprecedented detail and provides new insights into headgroup conformation and hydration as a function of lateral pressure. While conventional box models are incapable of modeling the experimental data at high momentum transfer satisfactorily, a quasimolecular composition–space refinement approach using distribution functions to map the spatial organization of submolecular headgroup fragments yields a much better description and overcomes inherent difficulties of box models. Upon going from the fluid liquid-expanded (LE) phase to the hexatic liquid-condensed (LC) phase, the orientation of the headgroup is tightly coupled to the ordering of the acyl chains. Headgroups tilt toward the surface normal to accommodate for the large reduction in available area per lipid molecule. The spread of the headgroup fragment distribution is considerably larger than the global interface roughness and increases slightly with compression. In distinction to earlier work on DMPE using the two-box approach, we find that the phosphate hydration stays essentially constant across the whole isotherm. The discrepancy between the results observed with the different models is attributed to intrinsic deficiencies of the box model

    Statistical analysis of discrete dislocation dynamics simulations: initial structures, cross-slip and microstructure evolution

    No full text
    Over the past decades, discrete dislocation dynamics simulations have been shown to reliably predict the evolution of dislocation microstructures for micrometer-sized metallic samples. Such simulations provide insight into the governing deformation mechanisms and the interplay between different physical phenomena such as dislocation reactions or cross-slip. This work is focused on a detailed analysis of the influence of the cross-slip on the evolution of dislocation systems. A tailored data mining strategy using the 'discrete-to-continuous (D2C) framework' allows to quantify differences and to quantitatively compare dislocation structures. We analyze the quantitative effects of the cross-slip on the microstructure in the course of a tensile test and a subsequent relaxation to present the role of cross-slip in the microstructure evolution. The precision of the extracted quantitative information using D2C strongly depends on the resolution of the domain averaging. We also analyze how the resolution of the averaging influences the distribution of total dislocation density and curvature fields of the specimen. Our analyzes are important approaches for interpreting the resulting structures calculated by dislocation dynamics simulations
    corecore