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Abstract
Complex stress states due to torsion lead to dislocation structures characteris-
tic for the chosen torsion axis. The formation mechanism of these structures
and the link to the overall plastic deformation are unclear. Experiments allow
the analysis of cross sections only ex situ or are limited in spacial resolution
which prohibits the identification of the substructures which form within the
volume. Discrete dislocation dynamics simulations give full access to the dis-
location structure and their evolution in time. By combining both approaches
and comparing similar measures the dislocation structure formation in torsion
loading of micro wires is explained. For the 〈100〉 torsion axis, slip traces span-
ning the entire sample in both simulation and experiment are observed. They
are caused by collective motion of dislocations on adjacent slip planes. Thus
these slip traces are not atomically sharp. Torsion loading around a 〈111〉 axis
favors plasticity on the primary slip planes perpendicular to the torsion axis
and dislocation storage through cross-slip and subsequent collinear junction
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formation. Resulting hexagonal dislocation networks patches are small angle
grain boundaries. Both, experiments and discrete dislocation simulations show
that dislocations cross the neutral fiber. This feature is discussed in light of the
limits of continuum descriptions of plasticity.

Keywords: strain gradient, discrete dislocation dynamics, microwire torsion,
misorientation

(Some figures may appear in colour only in the online journal)

1. Introduction

Mechanical properties of small scale metallic structures have been investigated in detail focus-
ing on the size effect [1–4]. For larger structures under complex loading conditions a direct link
between dislocation structures and mechanical properties as well as experimental analysis of
those structures remains challenging [5–8]. For example, the dislocation structure forming in
twisted nano- and microwires and its connection to the mechanical properties as well as defor-
mation mechanisms is not yet clear: torsion experiments on thin metallic wires [9] triggered
the development of a complex strain gradient model in order to describe the size dependency
of the mechanical response of polycrystalline wires under torsion. Molecular dynamics (MD)
and discrete dislocation dynamics (DDD) simulations of cyclically twisted single-crystalline
thin wires reveal a strong dependence on the crystallographic orientation [10–15]. Continuum
dislocation dynamics (CDD) investigations show dislocation density distributions within the
wire consistent with DDD simulations [12, 16, 31] under torsion. A recent combined MD and
DDD investigation show the development of dislocation networks in the limit of very low dis-
location densities [17]. Homogeneous deformation in face centered cubic (fcc) crystals for a
〈110〉 torsion axis and heterogeneous deformation for 〈100〉 and 〈111〉 with localization at the
forming twist boundaries are found as the governing deformation mechanisms [10, 11]. Due
to the small diameters and high loading rate of the wires in MD simulations, dislocations are
nucleated at free surfaces. A larger sample diameter changes the mechanism.

In micrometer-sized specimen under uniaxial and cyclic loading the emergence of com-
plex dislocation networks is observed. Depending on the orientation and loading amplitude,
different dislocation pile-ups are generated around the center of the sample, which can be
interpreted as small angle grain boundaries [12]. Due to the large number of dislocations and
therefore increased number of stable junctions, a large fraction of the pile-up like structures in
the interior are rather stable and persist—with some relaxation—even after unloading. These
pile-up like structures can also consist of dislocations on parallel slip planes [16].

Experimental studies on microwires in torsion loading focus mainly on the size effect and
the underlying competing mechanisms of its origin [7, 18–20]. More recently, the investi-
gation of the mechanical behavior of alternating single-crystalline—so called bamboo struc-
tured—wires under torsion loading were reported [8]. Only the global mechanical response is
measured in these experiments due to the experimental setup. But the distribution of plasticity
is quite non-uniform along the wire with an aspect ratio of approximately 500 and consisting
of alternating 〈100〉 and 〈111〉 oriented grains with respect to the torsion axis.

Therefore, as a follow up to reference [8], we focus on a detailed investigation of the dislo-
cation structure forming in twisted single crystalline micrometer-sized fcc wires using DDD.
Both 〈100〉 and 〈111〉 torsion axes are considered. The combination of DDD for the evolution
of the microstructure and specifically tailored experiments for a grain based comparison of
plastic slip allow the analysis of the formation of the dislocation network, topological changes,
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and the deformation mechanisms leading to the observed structures and surface traces of dislo-
cations leaving the sample. There is no direct method to access the structure and evolution of a
dislocation network experimentally in situ. Therefore, indirect ex situ measurements based on
the distortions of the lattice due to the presence of dislocations are used: the fusion of exper-
imental and simulation data is established based the common language of misorientations.
The experimental examples are analyzed by high resolution electron backscatter diffraction
(EBSD), exceeding the spatial resolution of the Laue diffraction approach [8] before. Sim-
ulation results are postprocessed to provide local misorientation information as described in
appendix A.1.

The paper is organized as follows. In section 2 we first present the DDD framework includ-
ing the used parameters as well as experimental details. Section 3 shows simulation results,
postprocessing and the experimental observations. These are then discussed in section 4,
including some remarks on averaging aspects for the equivalent plastic strain which provides
a link for comparison to continuum plasticity descriptions. The study is then concluded in
section 5.

2. Methods

This work focuses on the plastic deformation behavior of fcc metals under torsion. The
microwires in the experiments are gold because such wires are available commercially and
oxidation is limited. DDD simulations use parameters for elastically isotropic aluminum. The
focus of the observations is on the evolution and development of the dislocation structure. Only
indirect measures like local misorientations are compared. These are independent of the lattice
parameter and elastic constants and provide a common language for comparison. Hence, the
underlying material is of less importance in this context. The most important property is the
crystal structure (fcc), since it provides the plastic degrees of freedom (dof), which are the
basis for the observed dislocation structure. A possible influence on the results regarding the
chosen material (or material model) is discussed in section 4.

2.1. Discrete dislocation dynamics

A DDD framework is used to follow the dislocation structure evolution during loading. The
framework allows modeling finite sized samples in three dimensions for small strains and solv-
ing the complete boundary value problem. It is described in detail elsewhere [12, 21–23] and
only a short description is given here.

Dislocations are discretized by nodes connected by piecewise straight segments. Their
motion is calculated according to the resolved Peach–Koehler force acting along the seg-
ments in their slip plane. Finiteness of the sample is implemented via the superposition prin-
ciple, which accounts for both the boundary conditions and image forces [22, 24]. Changes
in the dislocation topology like junction formation, cross-slip and annihilation are treated
with constitutive rules [22, 25]. Material parameters for fcc isotropic aluminum are used as
a model system (shear modulus G = 27 GPa, Poisson’s ratio ν = 0.347, lattice parameter
a = 0.404 nm).

The computational cost of DDD simulations does not allow for the same sample dimensions
and strain levels compared to those of the experiments [26]. Therefore a simplified and smaller
sample geometry is taken. In the present study, the global mechanical response in terms of
normalized moment versus surface shear strain is not of interest for two reasons: (i) this infor-
mation is experimentally not accessible as only an integrated value of all grains in a wire can
be measured; (ii) there is not a universal or unique behavior of single similarly oriented crystal
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sections due to the influence of neighboring grains. Therefore instead of modeling the alter-
nating structure of 〈100〉 and 〈111〉 oriented grains, individual grains with the two orientations
are subjected to torsion boundary conditions. The DDD samples have a square cross section
as opposed to the circular cross section of the experimental wires, which allows the usage of
an efficient finite element solver [26]. The choice of this efficient solver also restricts the used
DDD code to cuboid sample shapes. Due to the square geometry, zones of lower shear stresses
w.r.t. a circular cross-section are present towards the corners, but the dislocation behavior in
the inscribed cylinder of the sample is not fundamentally altered, e.g. the shear stress gradient
occurring under torsion on each slip system is present and only distorted. The choice can further
be justified by comparison to published MD and DDD simulations of 〈100〉 and 〈111〉 circu-
lar cross sections which show a similar planar dislocation arrangement [10, 11, 16]. I.e. our
observed dislocation structures match the results in the presented references despite different
cross-sectional geometries.

The initial dislocation structure consists of randomly distributed Frank–Read sources (w.r.t.
position and orientation) in a cylindrical subvolume of the cuboid shape. This is done to fur-
ther avoid activation of sources towards the corners outside the cylindrical subvolume. The
initial dislocation density on each slip system is ≈4.2 × 1011 m−2, resulting in a total density
of approximately ρstart ≈ 5 × 1012 m−2. The source length is chosen to be 1.5/

√
ρstart with a

variation of ±20%. The choice for the initial spatial dislocation distribution places the sam-
ple in a multiplication controlled regime [12]. A higher density is chosen in the simulations
as compared to the well annealed samples in the experiments to retain the important features
of the dislocation structure: smaller samples with a higher density behave equivalent to larger
samples with a lower density in accordance with the similitude principle [27].

The torsion loading of the sample is applied through boundary conditions on the surface
nodes of the wire-like shape: (i) the nodes belonging to the bottom surface are fixed; (ii) the
side faces have traction free boundary conditions; (iii) the top surface nodes have mixed con-
ditions: the out-of-plane dof are set to be traction free, while the in-plane dof have prescribed
displacements corresponding to the imposed torsion angle. These boundary conditions allow
for the development of waviness of the top surface under torsion loading of wires with a square
cross section. Both the waviness and the square cross section introduce spurious stress fields at
the top and the corners respectively. Suppressing the waviness on both ends would introduce
additional spurious stress components. Applying traction free condition in the normal direc-
tion of the top surfaces is a softer boundary constraint. This surface corresponds to one grain
boundary in the bamboo structure which is also not a rigid interface.

By rotating the crystal orientation with respect to the torsion axes we checked that the fun-
damental observations reported later remain valid and are not artifacts of the square shape of
the cross section. Furthermore the detailed analysis is limited to a cylindrical subvolume with
the cylinder axis coinciding with the torsion axis. The radius of the cylinder is taken as half
the side length of the square cross section thereby excluding the corners in the analysis. Addi-
tionally, the resolved shear stresses acting on each slip system have been analyzed. In case of
a cylindrical cross section for a given slip system the corresponding shear stress varies linearly
within the cross section of the slip plane and the neutral line of zero shear stress intersects
the torsion axis. In case of a square cross section, the corresponding shear stress distribution
is similar within the cylindrical subvolume: there is a neutral line crossing the torsion axis
and a modulated gradient perpendicular to the neutral line. The zone of maximal differences
are towards the corners of the square, which are excluded from averages shown later. Corre-
sponding shear stress distributions have been analyzed in [12, 14]. In [14] the final dislocation
pile-ups originate from a single source located close to the surface under torsion load indicate
moderately distorted equal stress lines in the slip plane. With decreasing distance from the
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torsion axis the resolved shear stress distribution per slip system in the square cross section
approaches the one found in cylindrical geometries. As the overall shear stress characteristics
on each slip system is similar for cylindrical and square cross sections within the analyzed
cylindrical subvolume the plasticity by dislocation glide around the torsion axis is expected to
be qualitatively identical.

The displacements during loading are imposed with a torsion angular rate of φ̇ = 1.7◦ μs−1

(this translates into a surface strain rate of 7.4 × 103 s−1) like in [12], where it was found
that the influence of different torsion rates on the overall response is not significant. In the
〈100〉 oriented sample, the cubic axes of the crystal are parallel to the laboratory frame. For
the sample with torsion axis parallel to 〈111〉 one Burgers vector in the plane orthogonal to the
torsion axis is aligned with an axis of the lab frame. Variations of rotations around the torsion
axes have also been checked on smaller samples and no significant dependence of the relevant
measures was found.

Dislocation structures are analyzed in the loaded state, for technical details the reader is
referred to appendix A. This is in contrast to the experimental cross-sections, where the anal-
ysis is only possible ex situ in the unloaded state. The influence of loaded vs unloaded states
in simulations was investigated by unloading smaller samples with a side length of 2 μm with
otherwise identical boundary conditions. These were then subjected to the same analysis before
and after relaxation. We found that while the dislocation structure rearranged during unload-
ing, the qualitative outcome did not change with unloading. That is, the measured signatures
of developed dislocation structures are qualitatively equivalent before and after unloading. As
expected, the main differences occur towards the corners of the square cross-section. The dislo-
cation rearrangement during unloading is assumed to be negligible for the larger samples, due
to the larger number of dislocations present leading to a larger number of possible pinning sites,
which stabilize the dislocation structure. The nature of the simulation vs experiment compari-
son is qualitative due to both the sample size difference and differences in boundary conditions:
single crystals vs bamboo structured wires. Based on the remarks above we compare results of
the larger simulations analyzed in the loaded state to experiments instead of unloaded smaller
ones.

2.2. Experimental sample preparation and microstructure

The base material for the experiments is high purity gold (99.99 at%, supplier Heraeus Group,
Germany) in the form of polycrystalline wires. Using gold as reference material offers several
advantages: the fcc-structured pure noble metal in the form of micro wires is commercially
available within a wide range of different diameters, ranging from 5 μm to several 100 μm.
Using gold circumvents the issue of the formation of oxide layers at the surface during heat
treatment, which might affect the mechanical behavior of a specimen and lower the accuracy
of diffraction investigations. We use wires with a diameter of 25 μm. A minimum length of
some deca mm is necessary for the testing procedure [7]. Wires with single crystalline cross
sections, a so called bamboo structure [8], are used since it is not possible to produce single
crystalline specimens in these dimensions. These samples are produced by heat treating the
supplied polycrystalline micro wires at 800 ◦C for about 170 h in a high vacuum glass tube
furnace.

The wires are then twisted up to a defined plastic shear strain at the surface of γpl,r=R =
2.5%, with an in-house developed micro torsion device [28, 29]. The chosen degree of defor-
mation is an integral value related to the entire gauge length of the wire. The resulting torsion
moment Mt for a given load is identical in every cross section of the sample. But due to the
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Figure 1. SEM micrographs: (a) bamboo structured Au-wire (alternating 〈111〉 and
〈100〉 grains), (b) cross section and (c) longitudinal section of the wire prepared by FIB
milling.

bamboo structure the resulting deformation within individual grains is affected by the individ-
ual misalignment between the crystals orientation and the wire and experimental axis.

After loading, several segments of the wire are glued on scanning electron microscope
(SEM) stubs with silver paint. The stubs are mounted into a dual beam SEM-focused ion beam
(FIB) microscope (FEI NanoLab 200), equipped with an EBSD system from Oxford Instru-
ments. The recorded Kikuchi patterns are analyzed using the high resolution EBSD (HREBSD)
tool CrossCourt 3 (BLG Productions Ltd) [30]. In a first step EBSD surface scans along the
samples are performed to determine the orientation of individual grains related to the wires
main axis (cf figure 1(a)). In a second step, twin free, 〈100〉 and 〈111〉 oriented grains with
respect to the torsion axis and a minimum length of 30 μm are selected. Some of them are cut
by FIB perpendicular to the torsion axis between the two grain boundaries (figure 1(b)). Others
are centrically cut along the torsion axis direction (figure 1(c)). This procedure is destructive.
The following data from experiments is therefore not from one grain but a compilation of data
sets from different grains with the same orientation parallel to the torsion axis. To identify
macroscopic and microscopic orientation gradients resulting from deformation, the cross- and
longitudinal-sections are EBSD-scanned with a step size of 100–300 nm depending on the
degree of perturbing charging effects with decreasing step size.
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3. Results

In the following section we present results of the local deformation in form of misorientations
and plastic strain distributions. These results are used to calculate kernel average misorienta-
tion (KAM) or related selective misorientation measures. KAM and selective misorientation
measures reveal local dislocation structures. We further present details of the 3D dislocation
structure from the DDD simulations which are not accessible with the other methods.

3.1. DDD misorientation maps, microstructure and plastic strain

The misorientation angle θ is calculated from the displacement fields of the dislocations
including boundary corrections fields. For details of the calculation the reader is referred to
appendix A.1.

Figure 2(a) depicts a snapshot of the dislocation network of a sample with a 〈100〉 torsion
axis. Figures 2(b)–(d) show misorientations obtained within a cross section containing the
torsion axis located at half of the width. Figure 2(b) shows the misorientation with respect to the
reference voxel in the center on the bottom of the sample on the torsion axis; figure 2(c) shows
the misorientation as a function of the sample height along three lines parallel to the torsion
axis located at 1/3, 1/2 and 2/3 width across the section and their average; and figure 2(d)
shows the misorientation with respect to the right upper neighbor cell.

With 50× amplified plastic displacements, surface slip traces are visible (figure 2(a)). These
are not confined to a single slip plane, but appear in all possible directions of Burgers vectors
and multiple times. In figure 2(b) the rotation angle is used for coloring and the arrows indicate
the projected rotation axis. Within the cutting plane the local rotation axes are mainly parallel
to the torsion axis. Deviations from the parallel structure in the lower part are due to the fixed
boundary conditions. In the central and upper part the deviation hints at dislocation structures
on the respectively inclined glide planes. The local rotation axes within the cross-section are
shown as arrows. The line plots in figure 2(c) show a rather homogeneous gradient of the
misorientation in torsion direction. To reveal local changes and regions with high dislocation
density, the misorientation with respect to the upper right neighbor is analyzed. The selective
misorientation analysis with respect to the upper right neighbor (figure 2(d)) is done to detect
regions of large misorientation, which coincide with slip plane intersections of the chosen
cutting plane and are a signature of dislocation structures leading to a rotation of the sample
around the corresponding glide plane normal. Note that the chosen selective misorientation
analysis includes contributions from all present dislocations.

Figures 2(e)–(h) show the same analysis as before but for a sample with a 〈111〉 torsion
axis: the amplified plastic displacement of the sample in figure 2(e) shows smaller and less
traces due to dislocation slip in the lower part of the sample and some more pronounced traces
in the upper part. This is also visible in the misorientation plots (figures 2(f) and (g)) with the
reference point in the bottom center: from bottom to top, the misorientation increases in the
first third by steps. Local rotation axes are again mainly parallel to the torsion axis. The middle
section exhibits very little change in misorientation with height, while in the upper part the
misorientation increases again with larger steps, coinciding with the location of surface steps
in figure 2(e). In figure 2(h) the selective misorientation with respect to the upper neighbor is
shown. Depending on the crystallographic orientation, the selective misorientation measure is
chosen either with respect to the upper right or upper neighbor. The surface steps of the two
samples show the activity of slip systems. By selection of specific neighbors, such structures
are revealed in greater detail compared to the KAM measure.
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Figure 2. DDD simulation results of a sample with an aspect ratio of 2 and total length
of 4 μm. (a)–(d) show a sample with 〈100〉 torsion axis; (e)–(h) with 〈111〉 torsion
axis. (a) and (e) show dislocation structures and FEM information. The FEM mesh is
cut by a plane with normal parallel to the x-axis. The cutting planes contain the torsion
axis. Colored planes show orientations of slip plane families. Coloring of dislocations
is according to their slip plane normal. In (b) and (f) the misorientation with respect to
the reference’s point at the bottom center of the cutting plane containing the torsion axis
and in (c) and (g) the misorientation along selected lines within the plane are shown.
In (d) and (h) the local misorientation with respect to the right upper and the upper
neighbor are shown.

Figure 3 shows the dislocation density evolutions during loading. In the 〈100〉 case
(figure 3(a)), four slip systems (A3, B4, C3, D4) show a dislocation density increase by one
order of magnitude, while all others roughly triple their density. The same grouping of slip sys-
tems, albeit much less scatter within each group, is reported in literature for CDD simulation
results [31]. The results for the 〈111〉 torsion axis are less clear (figure 3(b)). The dislocation
density of slip system (B4) increases by a factor of 16, while the others are scattered from
approximately quadrupling (C-systems) to an increase of factor 12 (B2). Note, the B-systems
are orthogonal to the torsion axis and show the largest slip activity which leads to the large
surface steps shown in figure 2(a).

The contribution of the individual slip systems to the von Mises equivalent plastic strain is
shown in figures 3(c) and (d) in the loaded state. Figure 3(c) shows the equivalent plastic strain
contributions for the 〈100〉 torsion axis. While not all slip systems contribute equally, three of
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Figure 3. Dislocation density evolution during torsion and plastic activity of individual
slip systems. (a) and (b) show dislocation density evolution vs surface strain. Slip sys-
tems are indicated according to Schmid–Boas notation. (c) and (d) Equivalent von Mises
plastic strain contributions in the total volume of individual slip systems for both orien-
tations at maximum surface strain. Note that the order of magnitude of the equivalent
plastic strain differ for the two torsion axes.

them (A3, B2 and C3) have a substantial contribution. For the 〈111〉 torsion axis (figure 3(d))
the values are distributed heterogeneously: most of the equivalent plastic strain originates from
slip system B2. The systems B4 and D4 also have a significant contribution, while the others
contribute much less.

Figure 4 offers a view of the dislocation structure of a 〈111〉 sample within one of the large
surface steps indicated by the blue plane. The thickness of the slice corresponds to a voxel
height of 66.6 nm used for the evaluation of the misorientations shown in figures 2(e)–(h).
The in-plane dislocation structure consists of mostly screw type orientations in a hexagonal
network arrangement shown in the center. As expected, the individual hexagons consist of
the three Burgers vectors of this slip plane which is shown in the magnified view: different
Burgers vectors in the colors red, green and magenta. This picture is representative of such cuts
orthogonal to the torsion axis in the 〈111〉 cases where the dislocation density of the B-systems
is high.

A common trend for both torsion axes is observed for radial averages of the misorientation
angles with respect to the center (figure 5). Both show a steep increase close to the center
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Figure 4. Dislocation structure of the 〈111〉 sample including a cross section view con-
taining a large surface step indicated by the blue plane. Only dislocations within the blue
plane are shown. The indicated plane is a slice of height ≈66 nm. Dislocations arrange
in hexagonal network patches of mostly screw orientations (center), each hexagon con-
taining the three Burgers vectors of this plane (right, coloring according to Burgers
vector).

Figure 5. Radially averaged misorientation with respect to center pixel.

and level off slightly towards the outer radius. Averaging is here restricted to the cylindrical
subvolume to rule out corner effects on the measures. The difference in magnitude is due to
the difference in maximum surface strain of the two simulations.

Figure 6 shows von Mises equivalent plastic strain measures within a cross-section perpen-
dicular to the respective torsion axis employing two different averaging sequences. Figures 6(a)

and (d) show the von Mises equivalent plastic strain εeq

(
〈εpl

i j〉
)

calculated from the plastic

strain tensors averaged over columns of voxels parallel to the torsion axis 〈εpl
i j〉. This homog-

enizes the plastic deformation along the torsion axis significantly. If this procedure is done in
reverse order, i.e. first calculate the von Mises equivalent strain per voxel εeq(εpl

i j), and then
average these values for each column along the torsion axis direction 〈εeq〉, the local inho-
mogeneity is retained as depicted in figures 6(b) and (e). Apart from the maximum value a
notable difference is found for the equivalent plastic strain at the neutral fiber in the center.
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Figure 6. Different averages of cross sections from both torsion axes: (a)–(c) show
results for 〈100〉 torsion axis; (d)–(f) are for the 〈111〉 torsion axis. Maps with 61 by
61 elements with local equivalent plastic strains εeq differently averaged over the height
of the pillar. (a) and (d) resp. (b) and (e) show the same averaging procedure for both
orientations. For details, the reader is referred to the text; (c) and (f) show the radial
average comparison of both averaging procedures. The maximum sample radius does
not include the corners, but a circle with radius of half the cross section.

Figures 6(c) and (f) show radial averages of the data sets shown in figure 6(a), respective (d),
and (b), respective (e). Especially figure 6(f) shows a non-zero plastic strain of the center voxel
and its neighbors for the second averaging scheme.

Figure 7 shows selective kernel misorientation angles of the square cross sections of the
cross sections. A structure can be identified: lines of high local misorientation angles span
across the cross section, indicating the location of dislocation density gradients and therefore
possible sites for the formation of small angle twist grain boundaries which accommodate the
torsion loading.

3.2. Experimental misorientation maps from HREBSD scans

HREBSD data contains the residual crystal rotation vector components ωx , ωy, ωz after plas-
tic deformation (twisting). These are appropriately converted and analyzed with the same
procedure as the DDD simulation data.

Figures 8(a)–(c) show the misorientation along the torsion axis for a 〈100〉 oriented sample.
The reference point for figure 8(a) is the bottom center. Line plots along the torsion axis are
included in figure 8(b) and a local measure for the misorientation is depicted in figure 8(c),
analog to the analysis of the simulation results in figure 2. The misorientation changes from
the bottom to the top which is an expected natural outcome of torsion loading. The change
in misorientation along the torsion axis in different cuts is almost linear, but there are small
variations along individual lines corresponding to noise in the data. The local measure with a
right-upper-neighbor misorientation shows traces of slip plane intersections.
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Figure 7. Selective misorientation angles map for both torsion axes from DDD in a cross-
section at height ymax/2.

Figure 8. Misorientation maps of from experimental samples along the torsion axis
of a 〈100〉-oriented grain in (a) to (c) and a 〈111〉 oriented grain in (d) to (f): (a) and
(d) in-plane, reference bottom center; (b) and (e) misorientation along the torsion axis
and lines parallel to it; (c) and (f) misorientation angle with respect to right upper
neighbor.

Figures 8(d)–(f) show the misorientation along the torsion axis for a 〈111〉 oriented sample.
The reference point for the global change is again the bottom center. Line plots along torsion
axis directions are very much the same and there is no gradient orthogonal to the torsion axis
direction, i.e. from the center to the sample surface (figure 8(e)). The local measure of misori-
entation shown in figure 8(f) is calculated with the upper neighbor and reveals distinct lines of
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Figure 9. Misorientation maps of cross sections with respect to center from experiments
(a) and (b). The same data set radially averaged in (c) and (d).

large misorientations, which lie almost parallel to each other and coincide with the slip plane
orientation.

Figure 9 shows the misorientation of each data point with respect to the center pixel coin-
ciding with the torsion axis for both orientations. Both data sets show a large variation of the
misorientation in parts of the outer perimeter. This is due to a misalignment of the actual crys-
tallographic orientation with respect to the perfect 〈100〉 or 〈111〉 orientation [8]. Both data
sets exhibit a very small misorientation in the center region, which increases with increasing
radius, more clearly visible in figures 9(c) and (d) which show the radially averaged misorien-
tation versus radius. In contrast to [8], where the same analysis is done on a different wire, the
data here does not level off towards the surface. This is attributed to the different grains which
are examined with slightly different orientations and degree of deformation.

The selective KAM map of the 〈100〉 cross section (figure 10(a)) again shows individual
lines of high misorientation angles which are spanning across the wire cross section. The lines
are parallel to 〈110〉 directions of the crystal in case of the 〈100〉 oriented crystal.

In contrast, the selective KAM map of the 〈111〉 cross section (figure 10(b)) only shows
line fragments at the outer circumference of the cross section. They are stronger at locations of
higher overall misorientation where also edge effects of the sample preparation may influence
the EBSD results.
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Figure 10. Selective misorientation maps for both torsion axes from experimental cross
section. The step size has been varied for different EBSD scans to adapt for charging
and drift during the measurement.

4. Discussion

From the surface traces observed in the DDD simulations of the 〈100〉 torsion axis specimen
(cf figures 1(a) and 2(a)), it is clearly visible that dislocation glide is active on all primary
slip planes. Visual microstructure analysis shows that dislocations move over the neutral axis,
which is reflected by the diagonals present in misorientation maps with respect to the right
upper neighbor (figure 2(d)). Experimental data from the cross section (figure 10(a)) also con-
firms homogeneous dislocation activity across the cross section and traces of intersections of
slip planes with the cross section of the wire are visible. This leads to a finite plastic equivalent
strain in the center of the wire as shown in figure 6. This can not be reproduced by classical
crystal plasticity (CP) models or even strain gradient plasticity models [13]. Plasticity in those
models is the result of locally exceeding the yield stress. With a neutral fiber like in torsion this
condition can never be met. Interestingly, also the CDD result for thicker wires do not show
a finite equivalent plastic strain in the center of the wire [31]. This again hints at the impor-
tance of the dislocation–dislocation interactions which drive dislocations across the neutral
fiber resulting in a non-zero plastic strain (cf [14]). A possible reason for the absence of plastic
strain in the central column might be the larger wire diameter and the lack of microstructural
heterogeneity both reducing effectively pile-up like structures. Physically, the origin of the
finite plastic strain spreading across the neutral axis in the DDD results is due to the disloca-
tion interaction in pile-up like dislocation arrangements. In these pile-ups, dislocations starting
from the outer region push inner dislocations over the neutral fiber as can be seen from resolved
shear stress analysis for torsion loading, see e.g. [12, 14, 32]. Similar observations have been
made for bending loading conditions [14, 21, 33].

The motion of dislocations across of the neutral fiber/plane is not a local phenomenon but
representative for the whole sample as can be seen by the selective misorientation map with
respect to the right upper neighbor of the DDD simulation in figure 7(a) additionally confirmed
by the experimental data in figure 10(a). Dislocations moving across the neutral fiber in a strain
gradient is the result of mutual repulsion [14].

In experiments slip traces can be observed which surround the whole sample. The emer-
gence of the slip traces is attributed to the collective motion of dislocations on adjacent slip
planes. In the limit of very low dislocation density an individual dislocation can pass the com-
plete cross section without encountering other dislocations upon unloading, which was shown
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in [14]. Here, dislocations will intersect with others due to the high dislocation density (forest
interaction). This inhibits further motion and additionally stabilizes the structure upon unload-
ing. Therefore other dislocations on the same or neighboring planes can still glide and form a
visible step which involves effectively more than one slip plane. The 3D data of the dislocations
in the DDD simulations supports this. The dislocation structure does not exhibit a substruc-
ture on single slip planes formed during loading but exhibit slip traces on the sample surface.
Although the experimental resolution does not allow to distinguish between individual slip
planes, the similarity in the overall/global deformation behavior can be explained unambigu-
ously by the complementary approach. Further, the homogeneous activity of dislocations in the
〈100〉 case leads to the formation of substructures which effectively provide a twist around the
torsion axis. E.g. the pattern of dislocations analyzed by selective misorientation in figure 7(a)
shows a signature similar to the structure found in other DDD simulations [17]. The reason
we do not see an explicit structure like in [17] can most probably be attributed to the much
higher dislocation density used here. More dislocations might provide a twist without the for-
mation of an explicit dislocation network. This is supported by the selective misorientation
from figure 2(d) which shows rotations roughly around the axis of the inclined glide plane nor-
mals. Combining all rotations around all glide plane normals leads to an effective twist around
the torsion axis shown in figure 2(b).

For the 〈111〉 specimen DDD and experiment show very good qualitative agreement: a
strong localization on distinct slip planes orthogonal to the torsion axis is present in both cases
(cf figures 2 and 8). This localization, again, can not be modeled with classical CP models,
since the stress state is homogeneous along the sample. Regions of large misorientation in
the experiment indicate a high dislocation density which is confirmed by the observation of
dislocation structures from DDD simulations.

In more detail, the dislocation structure from the DDD simulation in figure 4 shows the
formation of hexagonal networks of dislocations with screw character, a substructure naturally
formed during torsion loading. This substructure is not an artifact of the square cross-section
used here, but a result of the overall stress state and dislocation interactions as it is also observed
by MD and other DDD simulations of small wires under torsion load [10, 11, 16, 34]. Specific
substructures found at different distinct heights of the sample may be attributed to the local
dislocation content and character, cf [15, 16]. Specifically the results in [16] show a heteroge-
neous distribution of dislocation activity which is not symmetric. The dislocation density in
our samples is relatively high but plasticity is still a local phenomenon, therefore the network
towards the sample corners is not an effect of top and bottom boundary conditions or the dif-
ference in cross-section shape, but of the crystallographic orientation, the initial dislocation
structure, and torsion loading which then develops into the networks typically also observed
by others.

Figure 11 gives the extent of this structure in 3D from DDD simulations. A relative misori-
entation for each voxel is calculated with respect to its surrounding 26 neighbors. For clarity of
presentation, all misorientations smaller than 0.04◦ are not shown. Regions of high misorien-
tation correspond to regions where a hexagonal network of dislocations (figure 4) is formed on
planes orthogonal to the torsion axis. This structure is not only formed, but is also the reason for
orthogonal surface steps in the experiments (figure 1), further confirmed by the plastic strain
contributions of slip systems extracted from DDD (figure 3(d)). Here, the B-systems clearly
contribute the most to the plastic strain and therefore shear off the wire.

However, it cannot be stated in general that a high dislocation density comes with a high
contribution to plastic strain. This can be rationalized by looking at the evolution of the dislo-
cation density and equivalent strain contributions of the 〈100〉 orientation (figures 3(a) and (c)).
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Figure 11. 3D rendering of the structure forming during torsion loading with a 〈111〉
axis. Voxels are colored according to KAM26 (misorientation with respect to all 26
neighbors of each voxel) misorientation analysis. Voxels with misorientations smaller
than 0.04◦ are not shown.

Systems A3, B4, C3 and D4 show the largest increase in dislocation density but the largest con-
tributions to the plastic strain are from systems B2, A3 and C3. Only two of the high dislocation
density systems also have a large contribution to the plastic strain. A possible explanation is that
not all dislocation density is produced by bow out, some is also produced (or annihilated) by
deposition in a junction, e.g. glissile junctions, cross-slip, and annihilation [35]. Furthermore,
a contribution to plastic strain does not necessarily imply dislocation storage: dislocations can
also escape through the surfaces and leaving none or only very little dislocation density in the
volume, while the contribution of the corresponding slip system to the plastic strain can be
large. And by design of the current problem, the resolved shear stress close the sample surface
(torsion loading and image forces) is the largest. The slip trace, which is visible on the sample
surface, confirms this (figures 2(a) and (e)).

The explanation for the formation mechanism of the hexagonal structure is based on
microstructural analysis: all dislocations on primary slip planes can in principle be activated
since all experience a large enough resolved shear stress. In the torsion gradient dislocations on
some slip systems orient themselves into mostly screw type dislocations. The resolved shear
stress on the 〈111〉 plane orthogonal to the torsion axis is approximately 1.5–2 times larger
than on the other ones. High activation and forest-type interactions lead to glissile junction
formation and cross-slip in this plane. Due to their respective Burgers vectors (B-systems),
they form a hexagonal network of screw dislocations (cf [36–38]). With cross-slip a dislo-
cation first has to meet other dislocations to form a hexagon. The glissile junction already
gives a partial hexagonal structure when formed. The formation of in-plane glissile junctions
(two dislocations with different Burgers vectors produce a dislocation with the third one in
the plane), facilitates the formation of the hexagonal arrangement. Strong collinear junctions
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can be formed e.g. through further cross-slipping dislocations [39, 40], which stabilize this
structure in the unloaded state. This network creates an effective visible slip step, which is
not confined to exactly one slip plane, but extends over several planes through multiple glis-
sile junctions and cross-slip events. The formed structure can be interpreted as a small angle
twist boundary. This angle approximated using θ = b/D, where θ is the misorientation angle,
b the magnitude of the Burgers vector and D the mean dislocation spacing of the structure.
The slice in figure 4 has a dislocation spacing of D ≈ 0.3 μm and b = 0.286 nm, resulting in
a misorientation angle of θ ≈ 0.05◦. The corresponding misorientation values for the planar
structure in the 3D KAM26 visualization in figure 11 are θKAM26 > 0.04◦ which confirms the
interpretation of this dislocation structure as a small angle grain boundary.

Classical CP simulations can not capture the essentials of the observed features by design.
Neither plasticity in the center nor the formation of a substructure or localization of slip can be
modeled since plasticity in the context of CP is the consequence of exceeding the local yield
stress. Furthermore microstructural features, such as the formation of patches of twist grain
boundaries, as observed here, require dislocation–dislocation interactions. Even very advanced
formulations like the CDD framework do not exhibit the essential observations of our results
[31]. While the CP modeling in general might be the correct approach for larger samples, we
use the comparison here to strongly advocate for different and microstructure based models in
the given size regime.

Even though the employed methods are different in nature with different shortcomings
(alignment of the sample in experiments, square cross section in DDD, size differences, dif-
ferent material systems, polycrystalline vs single crystal sample, loaded vs unloaded, etc), we
show that it is possible to fuse the data from both methods to understand dislocation substruc-
ture formation and explain deformation modes. This is achieved by using the measure of local
misorientations. It is independent of the exact crystallographic features like lattice constant
and Burgers vector and provides a common language for comparison. No stresses are com-
pared directly and if, this could—at least partially—be accounted for by normalization to e.g.
the shear modulus and the Burgers vector, as is often done.

The explanation for the formation of the substructure in the 〈111〉 case is based on glissile
junctions and cross-slip. Both occur equally often in the presented DDD simulations. A high
probability for the formation of glissile junctions is given by the high dislocation density and
the sample size and the activation of almost all slip systems [41]. It is a geometrical oper-
ation, which is independent of the specific fcc material. Cross-slip into the B system of the
〈111〉 sample is favored because of the 1.5–2 times higher resolved shear stress than on the
inclined planes. A lower cross-slip probability (for a different specific fcc material Al vs Au)
can be counteracted by high local stresses due to dislocation–dislocation interaction and sur-
face image forces, which have been reported to increase cross-slip probability [42]. We further
note that MD simulations of torsion for small nanowires have been reported for both Al and
Au and while the specific dislocation arrangement differs—mainly due to the different partial
dislocation separation distances based on the difference in stacking fault energy—the arrange-
ments are qualitatively very close: both materials show a network of screw dislocations [11].
In short, the formation of the substructure depends on forest hit rate, given by sample size
and dislocation density, favorable higher shear stress in the B plane and local high stresses.
A different specific material choice would probably change the individual weighting of the
contributions, but it is not expected to change the overall picture.
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5. Conclusion

We successfully use a combination of small scale experiments on bamboo-structured
microwires with single crystalline DDD simulations to understand deformation mechanisms in
torsion loading for two torsion axes. By calculating the misorientation caused by dislocations
in the DDD simulations, a link to the experiments is established, which allows for an expla-
nation of experimentally observed misorientation patterns and formation of circumferential
surface traces.

Experimentally observed surface traces in 〈100〉 grains are the result of the motion of dis-
locations on close-by parallel slip planes generating an effective slip trace on the surface. The
dislocation structure on these slices leads to inclined gradients in the misorientation analysis
shown in figures 2(d) and 8(c). Based on the analysis of misorientations of the cross section
along and perpendicular to the torsion axis we suggest that the homogeneous activation of
dislocations on all slip planes provides individual twist components around the glide plane
normals which effectively results in a global twist around the torsion axis. A clarification of
dislocation structure formation on inclined planes requires further analysis which is part of
future work.

The surface traces observed in the 〈111〉 case (figures 1(b) and 4) are the result of glissile
junctions and cross-slipping dislocations into this plane. Slip systems in this plane contribute
the most to the plastic strain, because the Schmid factor in this plane is the highest. The disloca-
tions form hexagonal networks via collinear and glissile junctions which stabilize the structure
during unloading. The interpretation of this structure as a small angle twist boundary is clearly
justified and experimental data shows corresponding signatures.

None of these features can be modeled with classical CP simulations, showing the limits
of this type of approach in this size regime: all plasticity is homogeneous and only dependent
on the local stress. No plasticity will be found in the neutral fiber in the center, where DDD
simulations and experiments show plasticity. This plasticity is caused by dislocations in pile-up
like arrangement in the gradient, which are pushed across the neutral fiber.
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Appendix A. Displacement fields for a given dislocations microstructure

The calculation of the displacement field at any position is described in the reference paper
[22]. The three dimensional implementation of the superposition approach [24] requires the
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displacement fields to allow for a mechanical consistent boundary value problem using the
small strain assumption. The calculation is based on corrected displacement fields of trian-
gular dislocation loops [43, 44]. The displacement field calculation is decomposed into two
contributions: (i) a term which contains only the Burgers vector 	b and the solid angle Ω which
the triangular loops spans with the evaluation position r and (ii) a term which contains the con-
tribution depending on the elastic properties. The solid angle term (i) changes sign and jumps
by 	b, when evaluating the displacement along a line crossing the area swept by the dislocation
line.

In the framework a dislocation loop is always planar. A dislocation is represented by a
sequence of connected straight segments. Therefore the dislocation loop is readily decomposed
into triangular dislocation loops. The swept area of each dislocation loop [22, 25] is tracked.
Junction formation (Lomer, glissile, cross-slip, Hirth) leads to superposition of segments at
the junctions and shared nodes. The junction may then have effectively a zero Burgers vector,
e.g. in case of cross-slip or glissile junction, where a third loop used to represent the glissile
dislocation [25, 41]. Thus individual loops remain closed within their slip plane. The total
displacement due to a given dislocation structure can be evaluated at any point r within the
volume in a post-processing operation. A cut-off procedure is used for distances smaller than
b to the dislocation core which sets the resolution limit for this contribution.

For sake of computational efficiency only those sides of the triangular dislocation loops
which coincide with actual dislocation segments require the calculation of the complete expres-
sion. For those sides of the triangular loops present due to the decomposition only, the evalu-
ation of the solid angle expression calculation is sufficient. This contribution contains the slip
discontinuity. Instead of using the solid angle calculation proposed in [43], a numerically more
efficient term proposed in [45] is used and adapted to the sign conventions used here. This term
requires the evaluation of one atan2(y, x) function only and is therefore approximately three
times faster.

A second contribution to the displacement field of the dislocation is due to the correction
fields from the boundary value problem which allows to describe finite sized samples. The
accuracy of the contribution depends on the resolution of the FEM mesh used, but the overall
fields are smooth within the volume. As shown for the image stresses and traction cancellation
[22], the error on the nodal image force of a segment piercing through the first element is
significant (≈10%) even for regularized stress fields and the same holds for the displacement
fields. Therefore we are confident, that the overall trends are representative for the considered
scenario.

The evaluation of the rotation due to the current dislocation structure requires the knowl-
edge of the displacement gradient (distorsion) within the volume. Here we are considering
only the displacement gradient caused by the dislocation configuration. Therefore only the
displacement contribution of the dislocations including the image contribution of the elasticity
problem have to be extracted. To do so, two boundary value problems are solved. The surface
areas having displacement respective traction free boundary conditions are denoted Su and St.

• The normal DDD superposition problem is solved: the boundary conditions for dof on Su

are ûI = utot − ũ, where ũtot are the total imposed displacements, ũ are the displacement
fields from all dislocation calculated in infinity space resulting in ûI. For the dofs belonging
to St, traction free boundary conditions are applied with σ̂ = −σ̃, where σ̃ are the stress
fields of all dislocations.

• A second elastic problem using the imposed displacement (torsion) on Su and traction free
boundary conditions on St expressed by ûII = utot and σ̂ = 0.

The plastic displacement field is then obtained as u = ûI − ûII.
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The plastic displacement gradient is derived from the total dislocations displacement fields
u. In order to properly take into account the displacement jumps due to the singular solid angle
term, the evaluation is performed loop wise. The displacement gradient is evaluated by a simple
finite difference scheme. Each time the line drawn between the evaluation points required for
the finite difference scheme cross the area swept/encircled by the dislocation the resulting finite
difference is corrected for the corresponding jump. Thus no artificial rotation is introduced by
the discontinuous displacement field. The numerically determined plastic displacement gradi-
ents contributions ∂ũi/∂x j for dislocation loops were validated against an analytical solution
for segments obtained using Mathematica.

A.1. Calculation of misorientation from distorsion field

The relationship between the distortion and the infinitesimal rotation tensor reads

Wi j =
1
2

(
dui

dx j
− du j

dxi

)
. (A.1)

It has three independent components and it can therefore be written as a product of an angle
and a (normed) rotation axis w = αn, where α is the rotation angle and n the rotation axis.
The relationship between the components is

W =

⎡
⎣ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤
⎦ ↔ w =

⎡
⎣w1

w2

w3

⎤
⎦ . (A.2)

From the rotation angle and axis, a rotation matrix can be constructed:

R = cos(α) 1 + (1 − cos(α))(n ⊗ n) + sin(α)

⎡
⎣ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎤
⎦ . (A.3)

The rotation matrix R is evaluated at each site and used for the computation on the misori-
entation with respect to a reference. In the following, Rref refers to the rotation matrix of the
reference pixel and R to any pixel whose misorientation is to be calculated with respect to that
reference. The orientation relationship and the angle θ between two sites is described by:

Rmis = RrefR−1, (A.4)

θ = acos

(
tr (Rmis) − 1

2

)
. (A.5)

The KAM with eight neighbors averages this measure of one voxel with the surrounding 8.
KAM26 respectively averages 26 neighbors in three dimensions. Average misorientation with
respect to right upper neighbor is this measure where R is the Rref right upper neighbor with
respect to its position as depicted in the figures.
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