37 research outputs found

    Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

    Get PDF
    The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll <i>a</i> content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy

    Seasonal dynamics in carbon cycling of marine bacterioplankton are lifestyle dependent

    Get PDF
    Although free-living (FL) and particle-attached (PA) bacteria are recognized as ecologically distinct compartments of marine microbial food-webs, few, if any, studies have determined their dynamics in abundance, function (production, respiration and substrate utilization) and taxonomy over a yearly cycle. In the Baltic Sea, abundance and production of PA bacteria (defined as the size-fraction >3.0 μm) peaked over 3 months in summer (6 months for FL bacteria), largely coinciding with blooms of Chitinophagales (Bacteroidetes). Pronounced changes in the growth efficiency (range 0.05–0.27) of FL bacteria (defined as the size-fraction <3.0 μm) indicated the magnitude of seasonal variability of ecological settings bacteria experience. Accordingly, 16S rRNA gene analyses of bacterial community composition uncovered distinct correlations between taxa, environmental variables and metabolisms, including Firmicutes associated with elevated hydrolytic enzyme activity in winter and Verrucomicrobia with utilization of algal-derived substrates during summer. Further, our results suggested a substrate-controlled succession in the PA fraction, from Bacteroidetes using polymers to Actinobacteria and Betaproteobacteria using monomers across the spring to autumn phytoplankton bloom transition. Collectively, our findings emphasize pronounced seasonal changes in both the composition of the bacterial community in the PA and FL size-fractions and their contribution to organic matter utilization and carbon cycling. This is important for interpreting microbial ecosystem function-responses to natural and human-induced environmental changes.Agencia Estatal de Investigación | Ref. PID2019-110011RB-C3

    Sensitivity of Bacterioplankton to Environmental Disturbance : A Review of Baltic Sea Field Studies and Experiments

    Get PDF
    Bacterioplankton communities regulate energy and matter fluxes fundamental to all aquatic life. The Baltic Sea offers an outstanding ecosystem for interpreting causes and consequences of bacterioplankton community composition shifts resulting from environmental disturbance. Yet, a systematic synthesis of the composition of Baltic Sea bacterioplankton and their responses to natural or human-induced environmental perturbations is lacking. We review current research on Baltic Sea bacterioplankton dynamics in situ (48 articles) and in laboratory experiments (38 articles) carried out at a variety of spatiotemporal scales. In situ studies indicate that the salinity gradient sets the boundaries for bacterioplankton composition, whereas, regional environmental conditions at a within-basin scale, including the level of hypoxia and phytoplankton succession stages, may significantly tune the composition of bacterial communities. Also the experiments show that Baltic Sea bacteria are highly responsive to environmental conditions, with general influences of e.g. salinity, temperature and nutrients. Importantly, nine out of ten experiments that measured both bacterial community composition and some metabolic activities showed empirical support for the sensitivity scenario of bacteria - i.e., that environmental disturbance caused concomitant change in both community composition and community functioning. The lack of studies empirically testing the resilience scenario, i.e., experimental studies that incorporate the long-term temporal dimension, precludes conclusions about the potential prevalence of resilience of Baltic Sea bacterioplankton. We also outline outstanding questions emphasizing promising applications in incorporating bacterioplankton community dynamics into biogeochemical and food-web models and the lack of knowledge for deep-sea assemblages, particularly bacterioplankton structure-function relationships. This review emphasizes that bacterioplankton communities rapidly respond to natural and predicted human-induced environmental disturbance by altering their composition and metabolic activity. Unless bacterioplankton are resilient, such changes could have severe consequences for the regulation of microbial ecosystem services

    Bacterioplankton population dynamics in a changing ocean

    No full text
    Bacterioplankton is characterized by high diversity, short generation times and rapid turnover. Despite their small size, these numerous microorganisms are a fundamental piece of aquatic ecosystems by channeling carbon to higher trophic levels through dissolved organic matter utilization. Yet, several gaps remain in our knowledge and understanding of bacterioplankton populations regarding detailed temporal dynamics, and mechanisms determining biogeographical patterns and potential responses to climate change. The aim of this thesis was to examine responses in bacterioplankton community composition and function when challenged by natural and anthropogenically-induced change in environmental conditions. High temporal resolution analysis of bacterioplankton population dynamics in the Baltic Sea indicated detailed seasonal responses. It also showed a similar but wide spectrum of niche differentiation patterns within several major bacterial groups. Analysis of geographic distributions of marine bacterial populations revealed bimodal occupancy-frequency patterns in bacterial communities, indicating that the presence of many locally rare taxa along with a few locally abundant taxa were explained by stochastic variation in colonization and extinction rates. Experimental manipulations with natural marine bacterioplankton assemblages revealed both specialist and generalist strategies in utilizing specific dissolved organic carbon compounds. When subjected to experimentally increased sea surface temperatures, lowered pH and additions of terrigenous carbon, some populations decreased in relative abundance while others were stable; concomitantly, many populations increased in relative abundance. Shifts in bacterial community composition were shown to correlate with changes in community functioning, but detection of such correlations depended largely on the detail of phylogenetic analysis and successional stage of the communities. The results in this thesis suggest that both natural and anthropogenically-induced changes in environmental conditions promote simultaneous adjustment and replacement of bacterial populations tightly linked with metabolic plasticity. These trade-offs play a significant role for understanding the relationship between bacterioplankton population dynamics and potential shifts in carbon cycling properties. We also show the importance of regional effects in shaping bacterial community composition, crucial for interpreting bacterioplankton distribution patterns. In conclusion, this thesis emphasizes the critical importance of connecting analysis of bacterioplankton population dynamics with examination of ecological mechanisms to improve our understanding of factors that regulate the distribution and activity of distinct bacterioplankton populations.Hälften av all fotosyntes på vår planet utförs av växtplankton. De producerar organiskt material som utgör grunden för näringskedjan i havet. Ungefär hälften av det organiska material som produceras av växtplankton utnyttjas inte direkt, utan omsätts istället av bakterieplankton som lever och växer fritt i vattenmassan eller på olika partiklar. Bakterieplankton spelar därmed en nyckelroll i ekosystemet genom sin konsumtion av organiskt kol som för energi högre upp i näringskedjan. Trots deras nyckelroll i akvatiska miljöer vet vi fortfarande mycket lite om bakteriernas detaljerade säsongsmönster, mekanismer bakom rumsliga mönster och hur olika populationer kan komma att svara på klimatförändringar. Målet med denna avhandling var att undersöka hur specifika populationers dynamik och ekosystemfunktion påverkas av naturliga eller klimatorsakade förändringar i havsmiljön. Våra resultat av högupplöst säsongsbunden dynamik i Östersjöns bakteriesamhälle avslöjar en liknande bred uppdelning av ekologiska strategier inom varje större grupp av bakterier, både i relativ abundans och temporal fördelning. Utbredning i rum och tid av många lokalt ovanliga populationer jämfört med få lokalt vanliga populationer förklarades genom stokastisk variation i kolonisations- och utdöendehastigheter. Vidare tyder experimentella studier med tillsatser av olika kolkällor på att marina bakterier har olika ekologiska strategier, där populationer är specialister eller generalister i utnyttjandet av enskilda kolkällor. Med hjälp av experiment med naturliga bakteriesamhällen bekräftade vi tydliga temperatureffekter på bakteriesamhällets sammansättning, och en mindre effekt av lägre pH - som dock tillsammans med förhöjd temperatur bidrog till en tydlig synergistisk effekt på artsammansättningen. Ökad temperatur tillsammans med tillsats av terrestert kol gav också en stor effekt på bakteriesamhällets struktur och ekosystemfunktion och pekar på en potentiellt viktig påverkan av ökad framtida nederbörd och avrinning från vattendrag till havet. Samtliga tre experiment med fokus på klimatpåverkan bekräftade förekomsten av populationer som försvann eller minskade i relativ abundans vid klimatpåverkan (känslighet), medan andra var stabila (resistens). Samtidigt svarade många populationer positivt på klimatorsakade förändringar i havsmiljön och ökade i relativ abundans (respons) samtidigt som bakteriernas ekosystemfunktion påverkades positivt. Sammanfattningsvis visar denna avhandling att vissa nya bakteriepopulationer kan etablera sig och ersätta andra samtidigt som vissa befintliga populationer anpassar sin livsstrategi och ekologi till förändringar i havsmiljön. Vi visar också vikten av regionala effekter, d.v.s. kolonisation och utdöende, för bakteriesamhällets struktur, viktigt för tolkningen av biogeografiska mönster och den genomiska potentialen hos specifika populationer. Denna avhandling poängterar därmed betydelsen av att koppla studier av ekologiska mekanismer till både rumsliga och temporala spridningsmönster hos bakterier och till populationers kapacitet att svara på och anpassa sig till förändringar i havsmiljön

    Structuring of bacterioplankton communities by specific dissolved organic carbon compounds

    No full text
    20 pages, 5 figures, 2 tablesThe main role of microorganisms in the cycling of the bulk dissolved organic carbon pool in the ocean is well established. Nevertheless, it remains unclear if particular bacteria preferentially utilize specific carbon compounds and whether such compounds have the potential to shape bacterial community composition. Enrichment experiments in the Mediterranean Sea, Baltic Sea and the North Sea (Skagerrak) showed that different low-molecular-weight organic compounds, with a proven importance for the growth of marine bacteria (e.g. amino acids, glucose, dimethylsulphoniopropionate, acetate or pyruvate), in most cases differentially stimulated bacterial growth. Denaturing gradient gel electrophoresis ‘fingerprints’ and 16S rRNA gene sequencing revealed that some bacterial phylotypes that became abundant were highly specific to enrichment with specific carbon compounds (e.g. Acinetobacter sp. B1-A3 with acetate or Psychromonas sp. B3-U1 with glucose). In contrast, other phylotypes increased in relative abundance in response to enrichment with several, or all, of the investigated carbon compounds (e.g. Neptuniibacter sp. M2-A4 with acetate, pyruvate and dimethylsulphoniopropionate, and Thalassobacter sp. M3-A3 with pyruvate and amino acids). Furthermore, different carbon compounds triggered the development of unique combinations of dominant phylotypes in several of the experiments. These results suggest that bacteria differ substantially in their abilities to utilize specific carbon compounds, with some bacteria being specialists and others having a more generalist strategy. Thus, changes in the supply or composition of the dissolved organic carbon pool can act as selective forces structuring bacterioplankton communitiesThis work was supported by the Swedish Research Council, the Crafoord Foundation and the Linnaeus University Centre for Ecology and Evolution in Microbial Model Systems (EEMiS) to J. P., and by postdoc Grant No. 623-2009-7258 from the Swedish Research Council to L. G.-C. Sampling and experiments at Blanes Bay Microbial Observatory was supported by Spanish projects SUMMER (CTM2008-03309/MAR) and STORM (CTM2009-09352/MAR) to J. M. G.Peer reviewe

    Prokaryotic community structure and respiration during long-term incubations

    Get PDF
    Despite the importance of incubation assays for studies inmicrobial ecology that frequentlyrequire long confinement times, few reports are available in which changesin the assemblage structure of aquatic prokaryotes were monitored during longtermincubations.We measured rates of dissolved organic carbon degradation andmicrobial respiration by consumption of dissolved oxygen (DO) in four experimentswith Lake Kinneret near-surface water and, concomitantly, we analyzed thevariability in prokaryotic community structure during long-term dark bottle incubations.During the first 24 h, therewere only minor changes in bacterial communitycomposition. Thereafter there were marked changes in the prokaryotic communitystructure during the incubations. In contrast, oxygen consumption rates (a proxyfor both respiration and dissolved organic carbon degradation rates) remained stablefor up to 10–23 days. This study is one of the first to examine closely the phylogeneticchanges that occur in the microbial community of untreated freshwaterduring long-term (days) incubations in dark, sealed containers. Novel informationon the diversity of the main bacterial phylotypes that may be involved in dissolvedorganic matter degradation in lake Kinneret is also provided. Our results suggestthat, under certain ecological settings, constant community metabolic rates can bemaintained as a result of shifts in community composition

    Microbial Biotreatment of Actual Textile Wastewater in a Continuous Sequential Rice Husk Biofilter and the Microbial Community Involved

    No full text
    <div><p>Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% decolorization at a hydraulic retention time of 67 h. Analysis of microbial community composition of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) gene fragments in the biofilters revealed a bacterial consortium known to carry azoreductase genes, such as <i>Dysgonomonas</i>, and <i>Pseudomonas</i> and the presence of fungal phylotypes such as <i>Gibberella</i> and <i>Fusarium</i>. Our findings emphasize that rice husk biofilters support a microbial community of both bacteria and fungi with key features for biodegradation of actual textile wastewater. These results suggest that microbial processes can substantially contribute to efficient and reliable degradation of actual textile wastewater. Thus, development of biodegradation systems holds promise for application of affordable wastewater treatment in polluted environments.</p></div

    Phytoplankton species-specific release of dissolved free amino acids and their selective consumption by bacteria

    Get PDF
    13 pages, 4 figures, 4 tablesDespite representing only a small fraction of the ocean's dissolved organic matter pool, dissolved free amino acids (DFAA) have high turnover rates and are major nitrogen and carbon sources for bacterioplankton. Both phytoplankton and bacterioplankton assimilate and release DFAA, but their consumption and production are difficult to quantify in nature due to their short residence times (min) as dissolved monomers. We segregated DFAA production by phytoplankton and bacterial consumption by measuring individual DFAA concentrations in four axenic phytoplankton cultures during the exponential growth phase, and also after 4 d incubations in the presence of a natural bacterioplankton community. The amounts and composition of the DFAA pool varied widely among phytoplankton species. The proportion of dissolved organic carbon attributed to DFAA varied among cultures. The picoeukaryotic prasinophyte, Micromonas pusilla, released higher amounts of DFAA than the other species tested (diatoms and dinoflagellate), especially alanine, which has been reported as the dominant individual DFAA in some oligotrophic environments. Community structure of heterotrophic prokaryotes responded to differences in the quality of organic matter released among microalgal species, with Roseobacter-related bacteria responding strongly to exudate composition. Our results demonstrate the specificity of DFAA extracellular release among several algal species and their preferential uptake by members of bacterial communitiesThis work was supported by projects STORM (CTM2009-09352/MAR) and ICARO (PIE 200830I120) and DOREMI (CTM2012-34294) funded by Spanish Ministerio de Economia y Competitividad. H.S. benefited from fellowships from the Spanish ‘Ministerio de Educación y Ciencia’ (JCI-2008-2727) and Brazilian ‘Ciências sem Fronteiras’ Program from CAPES (BJT 013/2012); C.R.-C. was funded by a I3P-CSIC predoctoral fellowship within the project MODIVUS, CTM2005-04795/MAR; J.P. was funded by the Crafoord Foundation and the Swedish governmental strong research program Ecochange; G.T.T. was partially supported by a sabbatical fellowship from the Spanish ‘Ministerio de Educación y Ciencia’Peer reviewe

    Dissolved Organic Nitrogen Inputs from Wastewater Treatment Plant Effluents Increase Responses of Planktonic Metabolic Rates to Warming.

    No full text
    Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea

    Phylogenetic tree of 16S rRNA gene sequences.

    No full text
    <p>Maximum-Likelihood based phylogenetic tree of 16S rRNA gene sequences obtained from DGGE bands and reference bacteria. Scale bar represent 0.1 nucleotide substitutions per site. Bold face text denote DGGE bands from this study and asterisks (*) denote phylotypes identified in (1). Parenthesis indicates GenBank accession number.</p
    corecore