84 research outputs found

    State-of-the-art of tools and methods to assess vine water status

    Get PDF
    Rising global air temperatures will lead to an increased evapotranspiration and altered precipitation pattern. In many regions this may result in a negative water balance during the vegetative cycle, which can augment the risk of drought and will require mitigation strategies. These strategies, ultimately, will mean the installation of irrigation systems in some winegrowing regions where vines were cultivated historically under rain-fed conditions and growers do not have many years of experience with vine water management. This review aims to provide a state-of-the-art summary of the recent and most important literature on vine water assessment for monitoring and adapting vineyard management strategies to production goals in view of global warming. Plant, soil and atmospheric methods are reviewed, and their advantages and drawbacks are discussed. Recent advances in plant water status measurement reveal the limitation of traditional techniques such as water potential, particularly in the context of drought and high vapor pressure deficit and the discoveries regarding hydraulic and stomatal regulation. New technologies can integrate heterogeneous sources of information collected in the vineyard at different spatial and temporal resolutions. Such new approaches offer new synergies to overcome limitations inherent to plant water status measurement techniques obtained directly or indirectly from proxy measurements

    The Microvine: A Versatile Plant Model to Boost Grapevine Studies in Physiology and Genetics

    Get PDF
    The microvine is a grapevine somatic variant. The Vvgai1 mutation results in a miniaturization of the vegetative organs of the plant keeping fruit size intact and a systematic conversion of tendrils into inflorescences. The physiological characterization of the vegetative and reproductive development of the microvine makes it possible to infer kinetic data from spatial phenotypes. This biological model allows experiments on vine and grape development in tightly controlled conditions, which greatly accelerate physiology, molecular biology, as well as genetic studies. After introducing the main biological properties of the microvine, main results from various research programs performed with the microvine model will be presented

    Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit

    Get PDF
    Background: Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Results: Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. Conclusions: This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies

    Is transcriptomic regulation of berry development more important at night than during the day?

    Get PDF
    Diurnal changes in gene expression occur in all living organisms and have been studied on model plants such as Arabidopsis thaliana. To our knowledge the impact of the nycthemeral cycle on the genetic program of fleshly fruit development has been hitherto overlooked. In order to circumvent environmental changes throughout fruit development, young and ripening berries were sampled simultaneously on continuously flowering microvines acclimated to controlled circadian light and temperature changes. Gene expression profiles along fruit development were monitored during both day and night with whole genome microarrays (Nimblegen® vitis 12x), yielding a total number of 9273 developmentally modulated probesets. All day-detected transcripts were modulated at night, whereas 1843 genes were night-specific. Very similar developmental patterns of gene expression were observed using independent hierarchical clustering of day and night data, whereas functional categories of allocated transcripts varied according to time of day. Many transcripts within pathways, known to be up-regulated during ripening, in particular those linked to secondary metabolism exhibited a clearer developmental regulation at night than during the day. Functional enrichment analysis also indicated that diurnally modulated genes considerably varied during fruit development, with a shift from cellular organization and photosynthesis in green berries to secondary metabolism and stress-related genes in ripening berries. These results reveal critical changes in gene expression during night development that differ from daytime development, which have not been observed in other transcriptomic studies on fruit development thus far. © 2014 Rienth et al.This work is part of the DURAVITIS program which is financially supported by the ANR (Agence national de la recherche) -Genopole (project ANR-2010-GENM-004-01) and the Jean Poupelain foundation (30 Rue Gâte Chien, 16100 Javrezac, France).Peer Reviewe

    Front. Plant Sci.

    Get PDF
    Temperature, water, solar radiation, and atmospheric CO2 concentration are the main abiotic factors that are changing in the course of global warming. These abiotic factors govern the synthesis and degradation of primary (sugars, amino acids, organic acids, etc.) and secondary (phenolic and volatile flavor compounds and their precursors) metabolites directly, via the regulation of their biosynthetic pathways, or indirectly, via their effects on vine physiology and phenology. Several hundred secondary metabolites have been identified in the grape berry. Their biosynthesis and degradation have been characterized and have been shown to occur during different developmental stages of the berry. The understanding of how the different abiotic factors modulate secondary metabolism and thus berry quality is of crucial importance for breeders and growers to develop plant material and viticultural practices to maintain high-quality fruit and wine production in the context of global warming. Here, we review the main secondary metabolites of the grape berry, their biosynthesis, and how their accumulation and degradation is influenced by abiotic factors. The first part of the review provides an update on structure, biosynthesis, and degradation of phenolic compounds (flavonoids and non-flavonoids) and major aroma compounds (terpenes, thiols, methoxypyrazines, and C13 norisoprenoids). The second part gives an update on the influence of abiotic factors, such as water availability, temperature, radiation, and CO2 concentration, on berry secondary metabolism. At the end of the paper, we raise some critical questions regarding intracluster berry heterogeneity and dilution effects and how the sampling strategy can impact the outcome of studies on the grapevine berry response to abiotic factors

    Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip

    Get PDF
    UMR AGAP - équipe DAAV - Diversité, adaptation et amélioration de la vigne[b]Background[/b] [br/]The increasing temperature associated with climate change impacts grapevine phenology and development with critical effects on grape yield and composition. Plant breeding has the potential to deliver new cultivars with stable yield and quality under warmer climate conditions, but this requires the identification of stable genetic determinants. This study tested the potentialities of the microvine to boost genetics in grapevine. A mapping population of 129 microvines derived from Picovine x Ugni Blanc flb, was genotyped with the Illumina® 18 K SNP (Single Nucleotide Polymorphism) chip. Forty-three vegetative and reproductive traits were phenotyped outdoors over four cropping cycles, and a subset of 22 traits over two cropping cycles in growth rooms with two contrasted temperatures, in order to map stable QTLs (Quantitative Trait Loci). [br/][b]Results[/b] [br/]Ten stable QTLs for berry development and quality or leaf area were identified on the parental maps. A new major QTL explaining up to 44 % of total variance of berry weight was identified on chromosome 7 in Ugni Blanc flb, and co-localized with QTLs for seed number (up to 76 % total variance), major berry acids at green lag phase (up to 35 %), and other yield components (up to 25 %). In addition, a minor QTL for leaf area was found on chromosome 4 of the same parent. In contrast, only minor QTLs for berry acidity and leaf area could be found as moderately stable in Picovine. None of the transporters recently identified as mutated in low acidity apples or Cucurbits were included in the several hundreds of candidate genes underlying the above berry QTLs, which could be reduced to a few dozen candidate genes when a priori pertinent biological functions and organ specific expression were considered. [br/][b]Conclusions[/b] [br/]This study combining the use of microvine and a high throughput genotyping technology was innovative for grapevine genetics. It allowed the identification of 10 stable QTLs, including the first berry acidity QTLs reported so far in a Vitis vinifera intra-specific cross. Robustness of a set of QTLs was assessed with respect to temperature variatio

    Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome

    Full text link

    Transcriptional response to temperature of ripening microvine (DRCF) depends on daytime

    No full text
    Transcriptional changes induced by temperature stress in ripening berries from the Dwarf Rapid Cycling and Flowering Vvgai1 mutant (DRCF) were investigated. Following a two weeks adaptation period at a constant day and night temperature couple, vines were submitted to 2 h heat stress during the day and during the night. To overcome biases in gene expression induced by the very high asynchrony in fruit ripening, berries were analyzed individually to create homogenous samples for RNA extraction. A whole transcriptome approach was conducted with Nimbelgen® 090918 Vitus exp HX12 oligoarrays bearing 29,582 probe sets. Samples were ranked by PCA analysis with the first 2 principal components explaining around 70% of the variation in gene expression. The first axis (temperature response) accounted for 50% of the variance between treatments. Interestingly, a major part of nycthemeral cycle responding genes loose this control upon temperature stress, while most temperature-induced genes were dependent on daytime. VvGOLS 1 and HSFA, both genes recently reported to be overexpressed upon high temperature treatments in the berry were used to validate applied stress on DRCF. They showed a high activation upon heat stress amongst numerous other heat responsive genes from other species

    State-of-the-art of tools and methods to assess vine water status

    No full text
    Rising global air temperatures will lead to an increased evapotranspiration and altered precipitation pattern. In many regions this may result in a negative water balance during the vegetative cycle, which can augment the risk of drought and will require mitigation strategies. These strategies, ultimately, will mean the installation of irrigation systems in some winegrowing regions where vines were cultivated historically under rain-fed conditions and growers do not have many years of experience with vine water management. This review aims to provide a state-of-the-art summary of the recent and most important literature on vine water assessment for monitoring and adapting vineyard management strategies to production goals in view of global warming. Plant, soil and atmospheric methods are reviewed, and their advantages and drawbacks are discussed. Recent advances in plant water status measurement reveal the limitation of traditional techniques such as water potential, particularly in the context of drought and high vapor pressure deficit and the discoveries regarding hydraulic and stomatal regulation. New technologies can integrate heterogeneous sources of information collected in the vineyard at different spatial and temporal resolutions. Such new approaches offer new synergies to overcome limitations inherent to plant water status measurement techniques obtained directly or indirectly from proxy measurements
    • …
    corecore