58 research outputs found

    PPARs in Alzheimer's Disease

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are well studied for their peripheral physiological and pathological impact, but they also play an important role for the pathogenesis of various disorders of the central nervous system (CNS) like multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. The observation that PPARs are able to suppress the inflammatory response in peripheral macrophages and in several models of human autoimmune diseases lead to the idea that PPARs might be beneficial for CNS disorders possessing an inflammatory component. The neuroinflammatory response during the course of Alzheimer's disease (AD) is triggered by the neurodegeneration and the deposition of the β-amyloid peptide in extracellular plaques. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been considered to delay the onset and reduce the risk to develop Alzheimer's disease, while they also directly activate PPARγ. This led to the hypothesis that NSAID protection in AD may be partly mediated by PPARγ. Several lines of evidence have supported this hypothesis, using AD-related transgenic cellular and animal models. Stimulation of PPARγ receptors by synthetic agonist (thiazolidinediones) inducing anti-inflammatory, anti-amyloidogenic, and insulin sensitising effects may account for the observed effects. Several clinical trials already revealed promising results using PPAR agonists, therefore PPARs represent an attractive therapeutic target for the treatment of AD

    Impact and Therapeutic Potential of PPARs in Alzheimer's Disease

    Get PDF
    Peroxisome proliferator activated receptors (PPARs) are well studied for their role of peripheral metabolism, but they also may be involved in the pathogenesis of various disorders of the central nervous system (CNS) including multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's and, Parkinson's disease. The observation that PPARs are able to suppress the inflammatory response in peripheral macrophages and in several models of human autoimmune diseases, lead to the idea that PPARs might be beneficial for CNS disorders possessing an inflammatory component. The neuroinflammatory response during the course of Alzheimer's disease (AD) is triggered by the deposition of the β-amyloid peptide in extracellular plaques and ongoing neurodegeneration. Non-steroidal anti-inflammatory drugs (NSAIDs) have been considered to delay the onset and reduce the risk to develop Alzheimer’s disease, while they also directly activate PPARγ. This led to the hypothesis that NSAID protection in AD may be partly mediated by PPARγ. Several lines of evidence have supported this hypothesis, using AD related transgenic cellular and animal models. Stimulation of PPARγ by synthetic agonist (thiazolidinediones) inducing anti-inflammatory, anti-amyloidogenic and insulin sensitizing effects may account for the observed effects. Several clinical trials already revealed promising results using PPARγ agonists, therefore PPARγ represents an attractive therapeutic target for the treatment of AD

    Distinct modulation of microglial amyloid β phagocytosis and migration by neuropeptidesi

    Get PDF
    Microglial activation plays an integral role in the development and course of neurodegeneration. Although neuropeptides such as bradykinin (BK), somatostatin (SST), and endothelin (ET) are known to be important mediators of inflammation in the periphery, evidence of a similar function in brain is scarce. Using immunocytochemistry, we demonstrate the expression of receptors for BK (B1, B2 subtypes), ET (ETA, ETB subtypes) and SST (SST 2, 3, 4 subtypes) in primary microglia and microglial cell lines. Exposure of BV2 and N9, as well as primary microglial cells to BK or SST increased Aβ uptake in a concentration-dependent manner, whereas endothelin decreased Aβ uptake. This was caused by increased phagocytosis of Aβ since the rate of intracellular Aβ degradation remained unaffected. All neuropeptides increased chemotactic activity of microglia. In addition, BK reduced Aβ-induced expression of proinflammatory genes including iNOS and COX-2. ET decreased the Aβ-induced expression of monocyte chemoattractant protein 1 and interleukin-6. These results suggest that neuropeptides play an important role in chemotaxis and Aβ clearance and modulate the brain's response to neuroinflammatory processes

    Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Septic encephalopathy is a severe brain dysfunction caused by systemic inflammation in the absence of direct brain infection. Changes in cerebral blood flow, release of inflammatory molecules and metabolic alterations contribute to neuronal dysfunction and cell death.</p> <p>Methods</p> <p>To investigate the relation of electrophysiological, metabolic and morphological changes caused by SE, we simultaneously assessed systemic circulation, regional cerebral blood flow and cortical electroencephalography in rats exposed to bacterial lipopolysaccharide. Additionally, cerebral glucose uptake, astro- and microglial activation as well as changes of inflammatory gene transcription were examined by small animal PET using [18F]FDG, immunohistochemistry, and real time PCR.</p> <p>Results</p> <p>While the systemic hemodynamic did not change significantly, regional cerebral blood flow was decreased in the cortex paralleled by a decrease of alpha activity of the electroencephalography. Cerebral glucose uptake was reduced in all analyzed neocortical areas, but preserved in the caudate nucleus, the hippocampus and the thalamus. Sepsis enhanced the transcription of several pro- and anti-inflammatory cytokines and chemokines including tumor necrosis factor alpha, interleukin-1 beta, transforming growth factor beta, and monocot chemoattractant protein 1 in the cerebrum. Regional analysis of different brain regions revealed an increase in ED1-positive microglia in the cortex, while total and neuronal cell counts decreased in the cortex and the hippocampus.</p> <p>Conclusion</p> <p>Together, the present study highlights the complexity of sepsis induced early impairment of neuronal metabolism and activity. Since our model uses techniques that determine parameters relevant to the clinical setting, it might be a useful tool to develop brain specific therapeutic strategies for human septic encephalopathy.</p

    Neuroinflammation in Alzheimer's Disease

    Get PDF
    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment but strongly interacts with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on micro- and astroglia and trigger an innate immune response, characterized by the release of inflammatory mediators, which contribute to disease progression and severity. Genome wide analysis suggests that several genes, which increase the risk for sporadic Alzheimer's disease en-code for factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity are likely to interfere with the immunological processes of the brain and further promote disease progression. This re-view provides an overview on the current knowledge and focuses on the most recent and exciting findings. Modulation of risk factors and intervention with the described immune mechanisms are likely to lead to future preventive or therapeutic strategies for Alzheimer's disease

    Distinct amyloid-beta and tau-associated microglia profiles in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by abnormal extracellular aggregates of amyloid-beta and intraneuronal hyperphosphorylated tau tangles and neuropil threads. Microglia, the tissue-resident macrophages of the central nervous system (CNS), are important for CNS homeostasis and implicated in AD pathology. In amyloid mouse models, a phagocytic/activated microglia phenotype has been identified. How increasing levels of amyloid-beta and tau pathology affect human microglia transcriptional profiles is unknown. Here, we performed snRNAseq on 482,472 nuclei from non-demented control brains and AD brains containing only amyloid-beta plaques or both amyloid-beta plaques and tau pathology. Within the microglia population, distinct expression profiles were identified of which two were AD pathology-associated. The phagocytic/activated AD1-microglia population abundance strongly correlated with tissue amyloid-beta load and localized to amyloid-beta plaques. The AD2-microglia abundance strongly correlated with tissue phospho-tau load and these microglia were more abundant in samples with overt tau pathology. This full characterization of human disease-associated microglia phenotypes provides new insights in the pathophysiological role of microglia in AD and offers new targets for microglia-state-specific therapeutic strategies

    SFRP1 modulates astrocyte-to-microglia crosstalk in acute and chronic neuroinflammation

    Get PDF
    Neuroinflammation is a common feature of many neurodegenerative diseases. It fosters a dysfunctional neuron–microglia–astrocyte crosstalk that, in turn, maintains microglial cells in a perniciously reactive state that often enhances neuronal damage. The molecular components that mediate this critical communication are not fully explored. Here, we show that secreted frizzled-related protein 1 (SFRP1), a multifunctional regulator of cell-to-cell communication, is part of the cellular crosstalk underlying neuroinflammation. In mouse models of acute and chronic neuroinflammation, SFRP1, largely astrocyte-derived, promotes and sustains microglial activation, and thus a chronic inflammatory state. SFRP1 promotes the upregulation of components of the hypoxia-induced factor-dependent inflammatory pathway and, to a lower extent, of those downstream of the nuclear factor-kappa B. We thus propose that SFRP1 acts as an astrocyte-to-microglia amplifier of neuroinflammation, representing a potential valuable therapeutic target for counteracting the harmful effect of chronic inflammation in several neurodegenerative diseases.This work was supported by grants from the Spanish AEI (BFU2013-43213-P; BFU2016-75412-R with FEDER support and PID2019-104186RB-I00), Fundacion Tatiana Perez de Guzman el Bueno and CIBERER to PB. JRC (BES-2011-047189), GP (BES-2017- 080318) and MIM (BES-2014-068797) were supported by FPI fellowships from the AEI. We also acknowledge a CBM Institutional Grant from the Fundacion Ramon Areces.Peer reviewe

    SUCLG2 identified as both a determinator of CSF Aβ1-42 levels and an attenuator of cognitive decline in Alzheimer's disease

    Get PDF
    Cerebrospinal fluid amyloid-beta 1-42 (Aβ1-42) and phosphorylated Tau at position 181 (pTau181) are biomarkers of Alzheimer's disease (AD). We performed an analysis and meta-analysis of genome-wide association study data on Aβ1-42 and pTau181 in AD dementia patients followed by independent replication. An association was found between Aβ1-42 level and a single-nucleotide polymorphism in SUCLG2 (rs62256378) (P = 2.5×10−12). An interaction between APOE genotype and rs62256378 was detected (P = 9.5 × 10−5), with the strongest effect being observed in APOE-ε4 noncarriers. Clinically, rs62256378 was associated with rate of cognitive decline in AD dementia patients (P = 3.1 × 10−3). Functional microglia experiments showed that SUCLG2 was involved in clearance of Aβ1-4

    Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment

    Full text link
    Biodiversity is rapidly declining1, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes4 across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades
    corecore