131 research outputs found

    Evidence for topological band inversion of the phase change material Ge2Sb2Te5

    Get PDF
    We present an angle-resolved photoemission study of a ternary phase change material, namely Ge2Sb2Te5, epitaxially grown on Si(111) in the metastable cubic phase. The observed upper bulk valence band shows a minimum at Gamma-bar being 0.3 eV below the Fermi level E_F and a circular Fermi contour around Gamma-bar with a dispersing diameter of 0.27-0.36 Anstroms^-1. This is in agreement with density functional theory calculations of the Petrov stacking sequence in the cubic phase which exhibits a topological surface state. The topologically trivial cubic KH stacking shows a valence band maximum at Gamma in line with all previous calculations of the hexagonal stable phase exhibiting the valence band maximum at Gamma for a trivial Z_2 topological invariant nu_0 and away from Gamma for non-trivial nu_0. Scanning tunneling spectroscopy exhibits a band gap of 0.4 eV around E_F

    Synthesis of Galactosyl‐Queuosine and Distribution of Hypermodified Q‐Nucleosides in Mouse Tissues

    Get PDF
    Queuosine (Q) is a hypermodified RNA nucleoside that is found in tRNAHis, tRNAAsn, tRNATyr, and tRNAAsp. It is located at the wobble position of the tRNA anticodon loop, where it can interact with U as well as C bases located at the respective position of the corresponding mRNA codons. In tRNATyr and tRNAAsp of higher eukaryotes, including humans, the Q base is for yet unknown reasons further modified by the addition of a galactose and a mannose sugar, respectively. The reason for this additional modification, and how the sugar modification is orchestrated with Q formation and insertion, is unknown. Here, we report a total synthesis of the hypermodified nucleoside galactosyl‐queuosine (galQ). The availability of the compound enabled us to study the absolute levels of the Q‐family nucleosides in six different organs of newborn and adult mice, and also in human cytosolic tRNA. Our synthesis now paves the way to a more detailed analysis of the biological function of the Q‐nucleoside family

    Suppressing Speckle Noise for Simultaneous Differential Extrasolar Planet Imaging (SDI) at the VLT and MMT

    Full text link
    We discuss the instrumental and data reduction techniques used to suppress speckle noise with the Simultaneous Differential Imager (SDI) implemented at the VLT and the MMT. SDI uses a double Wollaston prism and a quad filter to take 4 identical images simultaneously at 3 wavelengths surrounding the 1.62 um methane bandhead found in the spectrum of cool brown dwarfs and gas giants. By performing a difference of images in these filters, speckle noise from the primary can be significantly attenuated, resulting in photon noise limited data past 0.5''. Non-trivial data reduction tools are necessary to pipeline the simultaneous differential imaging. Here we discuss a custom algorithm implemented in IDL to perform this reduction. The script performs basic data reduction tasks but also precisely aligns images taken in each of the filters using a custom shift and subtract routine. In our survey of nearby young stars at the VLT and MMT (see Biller et al., this conference), we achieved H band contrasts >25000 (5 sigma Delta F1(1.575 um) > 10.0 mag, Delta H > 11.5 mag for a T6 spectral type object) at a separation of 0.5" from the primary star. We believe that our SDI images are among the highest contrast astronomical images ever made from ground or space for methane rich companions.Comment: 5 pages, 3 figures, 1 table. Presented at IAU Colloquium 200, Direct Imaging of Exoplanets: Science and Technique

    Sub-nm wide electron channels protected by topology

    Full text link
    Helical locking of spin and momentum and prohibited backscattering are the key properties of topologically protected states. They are expected to enable novel types of information processing such as spintronics by providing pure spin currents, or fault tolerant quantum computation by using the Majorana fermions at interfaces of topological states with superconductors. So far, the required helical conduction channels used to realize Majorana fermions are generated through application of an axial magnetic field to conventional semiconductor nanowires. Avoiding the magnetic field enhances the possibilities for circuit design significantly. Here, we show that sub-nanometer wide electron channels with natural helicity are present at surface step-edges of the recently discovered topological insulator Bi14Rh3I9. Scanning tunneling spectroscopy reveals the electron channels to be continuous in both energy and space within a large band gap of 200 meV, thereby, evidencing its non-trivial topology. The absence of these channels in the closely related, but topologically trivial insulator Bi13Pt3I7 corroborates the channels' topological nature. The backscatter-free electron channels are a direct consequence of Bi14Rh3I9's structure, a stack of 2D topologically insulating, graphene-like planes separated by trivial insulators. We demonstrate that the surface of Bi14Rh3I9 can be engraved using an atomic force microscope, allowing networks of protected channels to be patterned with nm precision.Comment: 17 pages, 4 figures, and supplementary material, Nature Physics in pres

    Удаление сернистых соединений из дизельных топлив с использованием металлосодержащих ионных жидкостей

    Get PDF
    Данная статья посвящена проблеме удаления сернистых соединений из дизельных топлив. Представлены характеристики полученных экстракционных систем на основе ионных жидкостей и солей металлов (СuBr[2], CoBr[2], NiBr[2]). Показана возможность использования комплексов ионных жидкостей с солями металлов в качестве экстрагентов для удаления серы из дизельного топлива
    corecore