329 research outputs found

    Study of combustion experiments in space

    Get PDF
    The physical bases and scientific merits were examined of combustion experimentation in a space environment. For a very broad range of fundamental combustion problems, extensive and systematic experimentation at reduced gravitational levels (0 g 1) are viewed as essential to the development of needed observations and related theoretical understanding

    Ultrasonic in-situ determination of the regression rate of the melting interface in burning metal rods

    Get PDF
    Results of tests in which metallic rods are burned in oxygen enriched atmospheres often include the determination of the regression rate of the melting interface for the burning test specimen. This regression rate is used as an indication of a metallic material's relative flammability and its general ability to sustain burning under the test conditions. This paper reports on the development and first application of an ultrasonic measurement system that enables in situ measurement of the regression rate of the melting interface in burning metal rods. All other methods currently used for determining this parameter are based on posttest, visual interrogation, which is costly and often inaccurate. The transducer and associated equipment used to drive and record the transducer's output signal are described and typical results for iron rods burning in pure oxygen at different gauge pressures are given along with a comparison of these results with regression gates obtained from visual interrogation. The excellent sensitivity, accuracy and reliability of the new ultrasonic transducer are demonstrated, thus indicating the transducer's great potential. (C) 1999 Acoustical Society of America. [S0001-4966(99)00702-X]

    Nonlinear equation for curved stationary flames

    Get PDF
    A nonlinear equation describing curved stationary flames with arbitrary gas expansion Ξ=ρfuel/ρburnt\theta = \rho_{{\rm fuel}}/\rho_{{\rm burnt}}, subject to the Landau-Darrieus instability, is obtained in a closed form without an assumption of weak nonlinearity. It is proved that in the scope of the asymptotic expansion for ξ→1,\theta \to 1, the new equation gives the true solution to the problem of stationary flame propagation with the accuracy of the sixth order in ξ−1.\theta - 1. In particular, it reproduces the stationary version of the well-known Sivashinsky equation at the second order corresponding to the approximation of zero vorticity production. At higher orders, the new equation describes influence of the vorticity drift behind the flame front on the front structure. Its asymptotic expansion is carried out explicitly, and the resulting equation is solved analytically at the third order. For arbitrary values of Ξ,\theta, the highly nonlinear regime of fast flow burning is investigated, for which case a large flame velocity expansion of the nonlinear equation is proposed.Comment: 29 pages 4 figures LaTe

    Hydrodynamic Stability Analysis of Burning Bubbles in Electroweak Theory and in QCD

    Full text link
    Assuming that the electroweak and QCD phase transitions are first order, upon supercooling, bubbles of the new phase appear. These bubbles grow to macroscopic sizes compared to the natural scales associated with the Compton wavelengths of particle excitations. They propagate by burning the old phase into the new phase at the surface of the bubble. We study the hydrodynamic stability of the burning and find that for the velocities of interest for cosmology in the electroweak phase transition, the shape of the bubble wall is stable under hydrodynamic perturbations. Bubbles formed in the cosmological QCD phase transition are found to be a borderline case between stability and instability.Comment: preprint # SLAC-PUB-5943, SCIPP 92/56 38 pages, 10 figures (submitted via `uufiles'), phyzzx format minor snafus repaire

    Anomalous roughness with system size dependent local roughness exponent

    Full text link
    We note that in a system far from equilibrium the interface roughening may depend on the system size which plays the role of control parameter. To detect the size effect on the interface roughness, we study the scaling properties of rough interfaces formed in paper combustion experiments. Using paper sheets of different width \lambda L, we found that the turbulent flame fronts display anomalous multi-scaling characterized by non universal global roughness exponent \alpha and the system size dependent spectrum of local roughness exponents,\xi_q, whereas the burning fronts possess conventional multi-affine scaling. The structure factor of turbulent flame fronts also exhibit unconventional scaling dependence on \lambda These results are expected to apply to a broad range of far from equilibrium systems, when the kinetic energy fluctuations exceed a certain critical value.Comment: 33 pages, 16 figure

    Asymptotics for turbulent flame speeds of the viscous G-equation enhanced by cellular and shear flows

    Full text link
    G-equations are well-known front propagation models in turbulent combustion and describe the front motion law in the form of local normal velocity equal to a constant (laminar speed) plus the normal projection of fluid velocity. In level set formulation, G-equations are Hamilton-Jacobi equations with convex (L1L^1 type) but non-coercive Hamiltonians. Viscous G-equations arise from either numerical approximations or regularizations by small diffusion. The nonlinear eigenvalue Hˉ\bar H from the cell problem of the viscous G-equation can be viewed as an approximation of the inviscid turbulent flame speed sTs_T. An important problem in turbulent combustion theory is to study properties of sTs_T, in particular how sTs_T depends on the flow amplitude AA. In this paper, we will study the behavior of Hˉ=Hˉ(A,d)\bar H=\bar H(A,d) as A→+∞A\to +\infty at any fixed diffusion constant d>0d > 0. For the cellular flow, we show that Hˉ(A,d)≀O(logA)for all d>0. \bar H(A,d)\leq O(\sqrt {\mathrm {log}A}) \quad \text{for all $d>0$}. Compared with the inviscid G-equation (d=0d=0), the diffusion dramatically slows down the front propagation. For the shear flow, the limit \nit lim⁥A→+∞Hˉ(A,d)A=λ(d)>0\lim_{A\to +\infty}{\bar H(A,d)\over A} = \lambda (d) >0 where λ(d)\lambda (d) is strictly decreasing in dd, and has zero derivative at d=0d=0. The linear growth law is also valid for sTs_T of the curvature dependent G-equation in shear flows.Comment: 27 pages. We improve the upper bound from no power growth to square root of log growt

    The Thermonuclear Explosion Of Chandrasekhar Mass White Dwarfs

    Get PDF
    The flame born in the deep interior of a white dwarf that becomes a Type Ia supernova is subject to several instabilities. We briefly review these instabilities and the corresponding flame acceleration. We discuss the conditions necessary for each of the currently proposed explosion mechanisms and the attendant uncertainties. A grid of critical masses for detonation in the range 10710^7 - 2×1092 \times 10^9 g cm−3^{-3} is calculated and its sensitivity to composition explored. Prompt detonations are physically improbable and appear unlikely on observational grounds. Simple deflagrations require some means of boosting the flame speed beyond what currently exists in the literature. ``Active turbulent combustion'' and multi-point ignition are presented as two plausible ways of doing this. A deflagration that moves at the ``Sharp-Wheeler'' speed, 0.1gefft0.1 g_{\rm eff} t, is calculated in one dimension and shows that a healthy explosion is possible in a simple deflagration if the front moves with the speed of the fastest floating bubbles. The relevance of the transition to the ``distributed burning regime'' is discussed for delayed detonations. No model emerges without difficulties, but detonation in the distributed regime is plausible, will produce intermediate mass elements, and warrants further study.Comment: 28 pages, 4 figures included, uses aaspp4.sty. Submitted to Ap

    An efficient mixed-precision, hybrid CPU-GPU implementation of a fully implicit particle-in-cell algorithm

    Full text link
    Recently, a fully implicit, energy- and charge-conserving particle-in-cell method has been proposed for multi-scale, full-f kinetic simulations [G. Chen, et al., J. Comput. Phys. 230,18 (2011)]. The method employs a Jacobian-free Newton-Krylov (JFNK) solver, capable of using very large timesteps without loss of numerical stability or accuracy. A fundamental feature of the method is the segregation of particle-orbit computations from the field solver, while remaining fully self-consistent. This paper describes a very efficient, mixed-precision hybrid CPU-GPU implementation of the implicit PIC algorithm exploiting this feature. The JFNK solver is kept on the CPU in double precision (DP), while the implicit, charge-conserving, and adaptive particle mover is implemented on a GPU (graphics processing unit) using CUDA in single-precision (SP). Performance-oriented optimizations are introduced with the aid of the roofline model. The implicit particle mover algorithm is shown to achieve up to 400 GOp/s on a Nvidia GeForce GTX580. This corresponds to 25% absolute GPU efficiency against the peak theoretical performance, and is about 300 times faster than an equivalent serial CPU (Intel Xeon X5460) execution. For the test case chosen, the mixed-precision hybrid CPU-GPU solver is shown to over-perform the DP CPU-only serial version by a factor of \sim 100, without apparent loss of robustness or accuracy in a challenging long-timescale ion acoustic wave simulation.Comment: 25 pages, 6 figures, submitted to J. Comput. Phy
    • 

    corecore