8,962 research outputs found
On critical pilot tasks
Critical pilot performance in decision making proces
X-ray vs. Optical Variations in the Seyfert 1 Nucleus NGC 3516: A Puzzling Disconnectedness
We present optical broadband (B and R) observations of the Seyfert 1 nucleus
NGC 3516, obtained at Wise Observatory from March 1997 to March 2002,
contemporaneously with X-ray 2-10 keV measurements with RXTE. With these data
we increase the temporal baseline of this dataset to 5 years, more than triple
to the coverage we have previously presented for this object. Analysis of the
new data does not confirm the 100-day lag of X-ray behind optical variations,
tentatively reported in our previous work. Indeed, excluding the first year's
data, which drive the previous result, there is no significant correlation at
any lag between the X-ray and optical bands. We also find no correlation at any
lag between optical flux and various X-ray hardness ratios. We conclude that
the close relation observed between the bands during the first year of our
program was either a fluke, or perhaps the result of the exceptionally bright
state of NGC 3516 in 1997, to which it has yet to return. Reviewing the results
of published joint X-ray and UV/optical Seyfert monitoring programs, we
speculate that there are at least two components or mechanisms contributing to
the X-ray continuum emission up to 10 keV: a soft component that is correlated
with UV/optical variations on timescales >1 day, and whose presence can be
detected when the source is observed at low enough energies (about 1 keV), is
unabsorbed, or is in a sufficiently bright phase; and a hard component whose
variations are uncorrelated with the UV/optical.Comment: 9 pages, AJ, in pres
Multiscaled Cross-Correlation Dynamics in Financial Time-Series
The cross correlation matrix between equities comprises multiple interactions
between traders with varying strategies and time horizons. In this paper, we
use the Maximum Overlap Discrete Wavelet Transform to calculate correlation
matrices over different timescales and then explore the eigenvalue spectrum
over sliding time windows. The dynamics of the eigenvalue spectrum at different
times and scales provides insight into the interactions between the numerous
constituents involved.
Eigenvalue dynamics are examined for both medium and high-frequency equity
returns, with the associated correlation structure shown to be dependent on
both time and scale. Additionally, the Epps effect is established using this
multivariate method and analyzed at longer scales than previously studied. A
partition of the eigenvalue time-series demonstrates, at very short scales, the
emergence of negative returns when the largest eigenvalue is greatest. Finally,
a portfolio optimization shows the importance of timescale information in the
context of risk management
Long-Term X-ray Spectral Variability in Seyfert 1 Galaxies
Direct time-resolved spectral fitting has been performed on continuous RXTE
monitoring of seven Seyfert 1 galaxies in order to study their broadband
spectral variability and Fe K alpha variability characteristics on time scales
of days to years. Variability in the Fe K alpha line is not detected in some
objects but is present in others, e.g., in NGC 3516, NGC 4151 and NGC 5548
there are systematic decreases in line flux by factors of ~2-5 over 3-4 years.
The Fe K alpha line varies less strongly than the broadband continuum, but,
like the continuum, exhibits stronger variability towards longer time scales.
Relatively less model-dependent broadband fractional variability amplitude
(Fvar) spectra also show weaker line variability compared to the continuum
variability. Comparable systematic long-term decreases in the line and
continuum are present in NGC 5548. Overall, however, there is no evidence for
correlated variability between the line and continuum, severely challenging
models in which the line tracks continuum variations modified only by a
light-travel time delay. Local effects such as the formation of an ionized skin
at the site of line emission may be relevant. The spectral fitting and Fvar
spectra both support spectral softening as continuum flux increases.Comment: Accepted for publication in ApJ. 29 page
Investigating source confusion in PMN J16034904
PMN J16034904 is a likely member of the rare class of -ray
emitting young radio galaxies. Only one other source, PKS 1718649, has been
confirmed so far. These objects, which may transition into larger radio
galaxies, are a stepping stone to understanding AGN evolution. It is not
completely clear how these young galaxies, seen edge-on, can produce
high-energy -rays. PMN J16034904 has been detected by TANAMI Very
Long Baseline Interferometry (VLBI) observations and has been followed-up with
multiwavelength observations. A Fermi/LAT -ray source has been
associated with it in the LAT catalogs. We have obtained Chandra observations
of the source in order to consider the possibility of source confusion, due to
the relatively large positional uncertainty of Fermi/LAT. The goal was to
investigate the possibility of other X-ray bright sources in the vicinity of
PMN J16034904 that could be counterparts to the -ray emission. With
Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi/LAT
data, which includes an improved localization analysis of 8 years of data. We
further study the X-ray fluxes and spectra. We conclude that PMN J16034904
is indeed the second confirmed -ray bright young radio galaxy.Comment: 4 pages, 3 figures, accepted for publication in A&
Random Matrix Theory Analysis of Cross Correlations in Financial Markets
We confirm universal behaviors such as eigenvalue distribution and spacings
predicted by Random Matrix Theory (RMT) for the cross correlation matrix of the
daily stock prices of Tokyo Stock Exchange from 1993 to 2001, which have been
reported for New York Stock Exchange in previous studies. It is shown that the
random part of the eigenvalue distribution of the cross correlation matrix is
stable even when deterministic correlations are present. Some deviations in the
small eigenvalue statistics outside the bounds of the universality class of RMT
are not completely explained with the deterministic correlations as proposed in
previous studies. We study the effect of randomness on deterministic
correlations and find that randomness causes a repulsion between deterministic
eigenvalues and the random eigenvalues. This is interpreted as a reminiscent of
``level repulsion'' in RMT and explains some deviations from the previous
studies observed in the market data. We also study correlated groups of issues
in these markets and propose a refined method to identify correlated groups
based on RMT. Some characteristic differences between properties of Tokyo Stock
Exchange and New York Stock Exchange are found.Comment: RevTex, 17 pages, 8 figure
The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines
We present results from a 150 ksec Suzaku observation of the Seyfert 1.5 NGC
3516 in October 2005. The source was in a relatively highly absorbed state. Our
best-fit model is consistent with the presence of a low-ionization absorber
which has a column density near 5 * 10^{22} cm^{-2} and covers most of the
X-ray continuum source (covering fraction 96-100%). A high-ionization absorbing
component, which yields a narrow absorption feature consistent with Fe K XXVI,
is confirmed. A relativistically broadened Fe K alpha line is required in all
fits, even after the complex absorption is taken into account; an additional
partial-covering component is an inadequate substitute for the continuum
curvature associated with the broad Fe line. A narrow Fe K alpha emission line
has a velocity width consistent with the Broad Line Region. The low-ionization
absorber may be responsible for producing the narrow Fe K alpha line, though a
contribution from additional material out of the line of sight is possible. We
include in our model soft band emission lines from He- and H-like ions of N, O,
Ne and Mg, consistent with photo-ionization, though a small contribution from
collisionally-ionized emission is possible.Comment: Accepted for publication in PASJ (Suzaku second special issue). 36
pages, 10 figure
Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes
We present a general theory for the equilibrium structure of cylindrical
tubules and helical ribbons of chiral lipid membranes. This theory is based on
a continuum elastic free energy that permits variations in the direction of
molecular tilt and in the curvature of the membrane. The theory shows that the
formation of tubules and helical ribbons is driven by the chirality of the
membrane. Tubules have a first-order transition from a uniform state to a
helically modulated state, with periodic stripes in the tilt direction and
ripples in the curvature. Helical ribbons can be stable structures, or they can
be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and
epsf.st
Evolutionary multi-stage financial scenario tree generation
Multi-stage financial decision optimization under uncertainty depends on a
careful numerical approximation of the underlying stochastic process, which
describes the future returns of the selected assets or asset categories.
Various approaches towards an optimal generation of discrete-time,
discrete-state approximations (represented as scenario trees) have been
suggested in the literature. In this paper, a new evolutionary algorithm to
create scenario trees for multi-stage financial optimization models will be
presented. Numerical results and implementation details conclude the paper
Relativistic Iron K Emission and absorption in the Seyfert 1.9 galaxy MCG-5-23-16
We present the results of the simultaneous deep XMM and Chandra observations
of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of
the best known examples of a relativistically broadened iron K-alpha line. The
time averaged spectral analysis shows that the iron K-shell complex is best
modeled with an unresolved narrow emission component (FWHM < 5000 km/s, EW ~ 60
eV) plus a broad component. This latter component has FWHM ~ 44000 km/s and EW
~ 50 eV. Its profile is well described by an emission line originating from an
accretion disk viewed with an inclination angle ~ 40^\circ and with the
emission arising from within a few tens of gravitational radii of the central
black hole. The time-resolved spectral analysis of the XMM EPIC-pn spectrum
shows that both the narrow and broad components of the Fe K emission line
appear to be constant in time within the errors. We detected a narrow sporadic
absorption line at 7.7 keV which appears to be variable on a time-scale of 20
ksec. If associated with Fe XXVI Ly-alpha this absorption is indicative of a
possibly variable, high ionization, high velocity outflow. The variability of
this absorption feature appears to rule out a local (z=0) origin. The analysis
of the XMM RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is
likely dominated by several emission lines superimposed on an unabsorbed
scattered power-law continuum. The lack of strong Fe L shell emission together
with the detection of a strong forbidden line in the O VII triplet is
consistent with a scenario where the soft X-ray emission lines are produced in
a plasma photoionized by the nuclear emission.Comment: 45 pages, 12 figures, 4 tables, accepted for publication in Ap
- …