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The cross-correlation matrix between equities comprises multiple interactions between

traders with varying strategies and time horizons. In this paper, we use the Maximum
Overlap Discrete Wavelet Transform (MODWT) to calculate correlation matrices over
different time scales and then explore the eigenvalue spectrum over sliding time windows.

The dynamics of the eigenvalue spectrum at different scales provides insight into the
interactions between the numerous constituents involved.

A study of the eigenvalue spectrum in its entirety provides further insight. On par-
titioning the eigenvalue time series, we show that negative index returns, (drawdowns),

are associated with periods where the largest eigenvalue is greatest, while positive index
returns, (drawups), are associated with periods where the largest eigenvalue is smallest.
Furthermore, through the study of the small eigenvalues of the correlation matrix, we
show that information about the correlation dynamics is visible at both ends of the
eigenspectrum across all scales.

1. Introduction

In recent years, the equal-time cross-correlation matrix for a variety of multivariate

data sets across different disciplines such as financial data [1–11], electroencephalo-

graphic (EEG) recordings [12, 21], magnetoencephalographic (MEG) recordings [13]

and others, has been studied extensively. In particular, Random Matrix Theory

(RMT) has been applied to filter the relevant information from the statistical fluc-

tuations inherent in empirical cross-correlation matrices, constructed for various

types of financial, [1–9], and MEG, [13], time series.

It has been suggested recently by several authors, [14–18] that there may, in

fact, be some real correlation information hidden in the RMT defined part of the

eigenvalue spectrum. A technique, involving the use of power mapping to identify

and estimate the noise in financial correlation matrices was described, [14], allowing

the suppression of those noise eigenvalues, to reveal different correlation structures

buried underneath. The relationship, between the eigenvalue density c of the true

correlation matrix, and that of an empirical correlation matrix C, was derived, [15,

16], to show that correlations can be measured in the random part of the spectrum.

The bulk of the spectrum was shown to deviate from the Wishart RMT class through

†School of Computing, Dublin City University, Glasnevin, Dublin 9, Ireland

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


October 6, 2008 19:21 WSPC/INSTRUCTION FILE
Multiscaled*Cross*Correlation*Dynamics

2 T.Conlon, H.J.Ruskin, M.Crane

the use of a Kolmogorov test, [17], where the existence of factors such as an firm

size, industry type and the overall market effect was due to collective influence of

the assets. Additional evidence that the RMT fit is not perfect was provided, [18],

where the dispersion of “noise” eigenvalues was shown to be inflated, indicating that

the bulk of the eigenvalue spectrum contains correlations masked by measurement

noise.

The behaviour of the largest eigenvalue of a cross-correlation matrix over small

windows of time, was studied, [19], for the Dow Jones industrial average (DJIA) and

DAX indices where evidence of a time-dependence between ‘drawdowns’/‘drawups’

and an increase/decrease in the largest eigenvalue was obtained. The dynamics

between the stocks of two different markets (DAX and DJIA) were then investigated,

[20], revealing two distinct eigenvalues of the combined cross-correlation matrix,

corresponding to each of the markets. By adjusting for time-zone delays, the two

eigenvalues coincided, implying that one market leads the dynamics in the other.

Equal-time cross-correlation matrices have been used also, [21], to characterise

dynamical changes in nonstationary multivariate time-series. As the synchronisa-

tion of k time series within an M−dimensional multivariate time series increases,

a repulsion between eigenstates of the correlation matrix results, in which k lev-

els participate. Through the use of artificially-created time series with pre-defined

correlation dynamics, it was demonstrated that there exist situations, where the

relative change in eigenvalues from the lower edge of the spectrum is greater than

that for the large eigenvalues, implying that information drawn from the smaller

eigenvalues is highly relevant.

This technique was subsequently applied to the dynamic analysis of the eigen-

value spectrum of the equal-time cross-correlation matrix of multivariate Epileptic

Seizure time series, using sliding windows. The authors demonstrated that informa-

tion about the correlation dynamics is visible in both the lower and upper eigen-

states. A further study, [12], which investigated temporal dynamics of focal onset

epileptic seizuresa. It was shown that the zero-lag correlations between multichan-

nel EEG signals tend to decrease during the first half of a seizure and increase

gradually before the seizure ends. Information about cross correlations were found

in the RMT bulk of eigenvalues, [22], with that extracted at the lower edge statis-

tically more significant than that from the larger eigenvalues. Application of this

technique to multichannel EEG data showed small eigenvalues to be more sensitive

to detection of subtle changes in the brain dynamics than the largest.

Multiscale analysis of the correlations between time series has been applied

to a number of problems in the physical sciences, [23, 24]. Specifically, wavelet

multiscale analysis has been used by numerous authors to decompose economic and

financial time series into orthogonal time-scale components of varying granularities.

Gençay and co-workers have variously examined the scaling properties of foreign

aA focal onset or partial seizure occurs when the discharge starts in one area of the brain and then
spreads over other areas.
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exchange volatility, [25], and volatility models without intraday seasonalities, [26],

using wavelet multiscaling techniques. The systematic risk in a Capital Asset Pricing

Model was estimated over different granularities, [27], where it was shown that

the return of a portfolio and its betab becomes stronger as the scale increases for

the S&P 500. This technique was then applied to the markets of various other

countries, [28], with similar results also found. The dependence of stock return

cross-correlations on the sampling time scale is known as the Epps effect [29].

The use of wavelet multiscale analysis has not been limited to pure financial

data. The relationship between consumption and income was examined, [30], where

wavelets were used to demonstrate that the marginal propensity to consume, for

all goods and services, is about 0.94. It was also shown that, at longer timescales,

interest rates and the consumption of durable and non-durable goods have an inverse

relationship. The analysis of scaling laws in an economic context, [31, 32], has been

approached for areas such as GDP, firm size and growth rate.

In this paper, we build upon the techiques applied to detect changes in the

correlation structure of EEG data, [21], through the use of wavelet multiscale anal-

ysis. This allows us to explore the eigenvalue dynamics of the correlation matrix

between the stocks of the Dow Jones Eurostoxx 50 at different granularities. An

analysis of eigenvalue behaviour during drawdowns provides evidence of the sensi-

tivity of small eigenvalues to subtle changes in interactions between traders, with

different strategies and time horizons. Sections(2 - 3) describe the techniques and

data used, Section (4) details the results obtained and conclusions are given in

Section (5).

2. Methods

2.1. Correlation dynamics

The equal-time correlation matrix between time series of stock returns is calculated

using a sliding time window where the number of stocks, N , is smaller than the

window size T . Given time series of stock returns Ri (t), i = 1, . . . , N , we normalise

the time series within each window as follows:

ri (t) =
Ri (t) − R̂i (t)

σi

(1)

where σi is the standard deviation of stock i = 1, . . . , N and R̂i is the time average

of Ri over a time window of size T . Then, the equal time cross-correlation matrix,

expressed in terms of ri (t), is

Cij ≡ 〈ri (t) rj (t)〉 (2)

The elements of Cij are limited to the domain −1 ≤ Cij ≤ 1, where Cij = 1 defines

perfect positive correlation, Cij = −1 corresponds to perfect negative correlation

bThe Beta of an asset is a measure of the volatility, or systematic risk, of a security or a portfolio
in comparison to the market as a whole.
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and Cij = 0 corresponds to no correlation. In matrix notation, the correlation

matrix is expressed as C = 1
T
RRt, where R is an N × T matrix with elements rit.

The eigenvalues λi and eigenvectors v̂i of the correlation matrix C are found

using Cv̂i = λiv̂i and then ordered according to size, such that λ1 ≤ λ2 ≤ . . . ≤

λN . Given that the sum of the diagonal elements of a matrix (the Trace) remains

constant under linear transformation,
∑

i λi must always equal the trace of the

original correlation matrix. Hence, if some eigenvalues increase then others must

decrease, to compensate, and vice versa (Eigenvalue Repulsion).

There are two limiting cases for the distribution of the eigenvalues [12, 21], with

perfect correlation, Ci ≈ 1, when the largest is maximised with value N (all others

taking value zero). When each time series consists of random numbers with average

correlation Ci ≈ 0, the corresponding eigenvalues are distributed around 1, (where

deviations are due to spurious random correlations). Between these two extremes,

the eigenvalues at the lower end of the spectrum can be much smaller than λmax. To

study the dynamics of each of the eigenvalues using a sliding window, we normalise

each eigenvalue in time using

λ̃i(t) =

(
λi − λ̄(τ)

)

σλ(τ)
(3)

where λ̄(τ) and σλ(τ) are the mean and standard deviation of the eigenvalues over

a particular reference period, τ . This normalisation allows us to visually compare

eigenvalues at both ends of the spectrum, even if their magnitudes are significantly

different. The reference period used to calculate mean and standard deviation of the

eigenvalue spectrum can be chosen to be a low volatility sub-period, (which helps

to enhance the visibility of high volatility periods), or the full-time period studied.

2.2. Wavelet multiscale analysis

Wavelets provide an efficient means of studying the multiresolution properties of

a signal, by decomposition into different time horizons or frequency components

(Discrete Wavelet Transform, DWT), [23, 24]. The definitions of the two basic

wavelet functions, the father φ and mother ψ wavelets are the functions:

φj,k (t) = 2
j

2φ
(
2jt− k

)
(4)

ψj,k (t) = 2
j

2ψ
(
2jt− k

)
(5)

where j = 1, . . . J in a J-level decomposition. The father wavelet integrates to 1

and reconstructs the longest time-scale component of the series, while the mother

wavelet integrates to 0 and is used to describe the deviations from the trend. The

wavelet representation of a discrete signal f(t) in L2(R) is:

f(t) =
∑

k

sJ,kφJ,k(t) +
∑

k

dJ,kφJ,k(t) + . . .+
∑

k

d1,kφ1,k(t) (6)

where J is the number of multiresolution levels (or scales) and k ranges from 1 to

the number of coefficients in the specified level. The coefficients sJ,k and dJ,k are
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the smooth and detail component coefficients respectively and given by

sJ,k =

∫
φJ,kf(t)dt (7)

dj,k =

∫
ψj,kf(t)dt (j = 1, . . . J) (8)

Each of the coefficient sets SJ , dJ , dJ−1, . . . d1 is called a crystal.

In this paper, we apply the MODWT, [23, 24], a linear filter that transforms a

series into coefficients related to variations over a set of scales. Like the DWT it

produces a set of time-dependent wavelet and scaling coefficients with basis vectors

associated with a location t and a unitless scale τj = 2j−1 for each decomposition

level j = 1, . . . , J0 . The MODWT, unlike the DWT, has a high level of redun-

dancy, however, is nonorthogonal and can handle any sample size N . It retains

downsampledc values at each level of the decomposition that would be discarded

by the DWT. This reduces the tendency for larger errors at lower frequencies when

calculating frequency dependent variance and correlations, (Section 2.3), as more

data is available.

2.3. Wavelet covariance and correlation

The wavelet covariance between functions f(t) and g(t) is defined to be the co-

variance of the wavelet coefficients at a given scale. The unbiased estimator of the

wavelet covariance at the jth scale is given by

νfg(τj) =
1

Mj

N−1∑

t=Lj−1

D̃
f(t)
j,t D̃

g(t)
j,t (9)

where all the wavelet coefficients affected by the boundary are removed [23] and

Mj = N−Lj +1. The wavelet variance at a particular scale ν2
f (τj) is found similarly.

The MODWT estimate of the wavelet cross correlation between functions f(t)

and g(t) may then be calculated using the wavelet covariance and the square root

of the wavelet variance of the functions at each scale j. The MODWT estimator

[24] of the wavelet correlation is then given by:

ρfg(τj) =
νfg(τj)

νf (τj)νg(τj)
(10)

3. Data

The data set comprises the 49 equities of the Dow Jones (DJ) Euro Stoxx 50 where

full price data is available from May 1999 to August 2007, resulting in 2183 daily re-

turns. The Dow Jones Euro Stoxx 50 is a stock index of Eurozone equities, designed

to provide a blue-chip representation of supersector leaders in the Eurozone. As the

cDownsampling or decimation of the wavelet coefficients retains half of the number of coefficients
that were retained at the previous scale and is applied in the DWT
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number of stocks in the index is small, this allows us to calculate cross-correlation

matrices for small time windows, without reducing the rank of the matrix.

4. Results

4.1. Eigenvalue dynamics

We analyse the dynamics of the cross-correlations between stocks, calculated at

different time scales, through the use of the eigenvalue spectrum. We first consider,

Fig. 1, the dynamics of the largest eigenvalue at each time scale, calculated using a

sliding time window of 100 days. This window was chosen such that Q = T
N

= 2.04,

thus ensuring that the data would be close to non-stationary in each sliding window

(Different values of Q were examined, [11], with little variation in the results).

Fig. 1(a) shows the value of the DJ Euro Stoxx Index over the period studied.

Fig. 1(b) displays the largest eigenvalue, calculated using the unfiltered (one day)

time series data for different time windows. As shown, the largest eigenvalue is far

from static, rising from a minimum of 7.5 to a maximum of 30.5 from early 2001 to

late 2003 (coinciding with the bursting of the “tech” bubble). This corresponds to an

increase in the influence of the “Market”, with the behaviour of traders becoming

more correlated. The next major increase occurred in early 2006, followed by a

relatively quick decline until the beginning of the “Credit Crunch” in 2007. Similar

to [19], we note an increase in the value of the largest eigenvalue during times of

market stress, with lower values during more “normal” periods.

We next calculate, using the MODWT (Section 2.2), the value of the largest

eigenvalue of the cross-correlation matrix over longer time horizons of 3, 6 and 11

days (Fig. 1(c-e)). Certain traders, (such as Hedge Fund managers), may have very

short trading horizons while others, (such as Pension Fund managers), have much

longer horizons. By looking at the value of the largest eigenvalue at different scales,

we try to characterise the impact of these different trading horizons on the cross-

correlation dynamics between large capitalisation stocks. In Fig. 1(c-e), we see that

the main features found in the unfiltered data are preserved over longer time scales.

However, certain features, such as the sizeable drop in the largest eigenvalue at the

longest scale in late 2003, are not seen at shorter scales, but the aggregate impact for

the unfiltered data is a moderate drop. Other features, such as the increase in 2006,

are not preserved across all scales. The different features, found at various scales,

suggest that the correlation matrix is made up of interactions between stocks, traded

by investors with different time horizons. This has implications for risk management,

as the correlation matrix used for input in a portfolio optimisation should depend

on the investors time horizon.

The repulsion, between eigenstates of the cross-correlation matrix as the level of

synchronisation between time series increases has been demonstrated for artificial

and EEG time series, [21], and for financial data [11]. In Fig. 2, we compare the

normalised largest eigenvalue with the average of the normalised 40 smallest eigen-

values over different time scales. The normalisation, (Eqn. 3), is carried out using
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Fig. 1. (a) DJ Euro Stoxx Index (b) Largest eigenvalue dynamics original data (c) 3 day scale (d)
6 day scale (e) 11 day scale

the average and standard deviation over the entire period, to allow comparison of

eigenvalues at both ends of the spectrum. The features found are in agreement with

those identified for the largest eigenvalue previously. Additionally, the dynamics of

the small eigenvalues are contrary to those of the largest eigenvalue across all scales,

(eigenvalues are repulsed). The small eigenvalues are shown to decrease from 2001

to 2003 across all scales, contrary to findings for the largest eigenvalue.

Redistribution of the correlation structure across the eigenvalue spectrum can

also be captured using ratios of eigenvalues. Fig. 3 shows the ratio of the largest

eigenvalue to the second largest eigenvalue, (calculated using sliding windows of 100

days), for the original unfiltered data and for correlation matrices calculated with

data corresponding to 3, 6 and 11 days. For unfiltered data, the ratio was found to

gradually increase from 2000 to 2003, corresponding to greater importance of the

largest eigenvalue, followed by a large decrease. At higher scales (6 and 11 days),

the ratio was found to increase more abruptly from mid 2002 implying that long

and short timescales capture different features of the correlation structure.

The distinct features and abrupt changes visible in the dynamics of eigenvalue
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Fig. 2. (a) DJ Euro Stoxx Index (b) Eigenvalue Dynamics at 3 day scale (c) Eigenvalue Dynamics
at 6 day scale (d) Eigenvalue Dynamics at 11 day scale

ratios, can be explained by the variation in the 2nd largest eigenvalue over time.

In the context of the analysis using deviating eigenvalues from RMT, [5], the in-

formation contained in the second largest eigenvalue may correspond to distinctly

different sectors at the various scales. This has important implications for portfolio

optimisation, where correlation between assets is a fundamental input.

4.2. Drawdown analysis

As indicated, (Section 1 and [11, 19]), drawdowns, (or periods of large negative

returns), and drawups, (periods of large positive returns), tend to be accompanied

by an increase in different eigenstates of the cross-correlation matrix. In this sec-

tion, we attempt to characterise the market according to the relative size of the

eigenvalues, as well as through the use of eigenvalue ratios.

The returns, correlation matrix and eigenvalue spectrum time series for over-

lapping windows of 100 days were calculated and normalised using the mean and

standard deviation over the entire series (Eqn. 3). By representing normalised eigen-

values in terms of standard deviation units (SDU), we can partition the eigenvalues

according to their magnitude. The average return of the index is shown in Ta-
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Fig. 3. Ratio largest eigenvalue to 2nd largest eigenvalue for (a) original data (b) 3 day scale (c)
6 day scale (d) 11 day scale

ble 1, (during periods when the largest eigenvalue is ±1 SDU), for both the largest

eigenvalue and the average of the normalised 40 smallest eigenvalues.

Looking first at the original or unfiltered data, we see that when the largest

eigenvalue is > 1 SDU, the average index return is found to be −9%. In contrast,

when it is < −1 SDU, the average index return is 6.4%. This allows us to char-

acterise the market into drawdowns and drawups by examining the relative size of

the eigenvalues. For the average of the 40 smallest eigenvalues, the partition re-

flects more marked drawdowns and drawups but with opposite signs. This indicates

that information on the interaction between traders, captured in the correlation

dynamics, is visible in both the lower and upper eigenstates.

Table 1 also shows the average index returns for partitioned eigenvalues, calcu-

lated using data at the longer scales (3, 6 and 11 days). The results show that the

characterisation of the largest eigenvalue, (well above average during drawdowns

and well below during drawups) is consistent across scales. The opposite is found

to occur for the small eigenvalues. The implication is that the correlation structure

between stocks is less dependent on the trader’s time horizon than the current state

of the market.
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Eigenvalues No. Std Unfiltered 1 2 3

<-1 6.4% 2.5% 8.5% 10.4%
Large

>1 -9% -10% -9.3% -7.6%

<-1 -9.6% -9.8% -12% -8.4%
Average 40 Smallest

>1 10% 9.6% 8.2% 8%

<-1 1.5% 0.4% 7.7% 6.4%

Ratio Largest

2ndLargest >1 -6.2% -7.2% -9.0% -7.2%

<-1 3.2% 3.5% -1% 6.9%

Ratio Largest
Sum40Smallest >1 -5.6% -4.7% -5.9% -3.8%

Table 1. Drawdown/Drawup analysis. Average Index Returns when various eigenvalue partitions
in SDU are > 1 and < −1.

In Table 1, we also present the ratio of the largest eigenvalue to the second

largest, (normalised over time as above). For the unfiltered data, the ratio is largest

during periods of negative returns and smallest during periods of positive return,

again implying that the market effect dominates during drawdowns. This is seen

across all scales with larger absolute values of the returns found at larger scales.

This again implies, that correlations calculated using longer time scales may be

more sensitive to market behaviour. The ratio of the largest eigenvalue to the sum

of the forty smallest eigenvalues is also shown in Table 1. This ratio is less sensitive

than that shown in Figure 3, with values varying from 0.22 to 2.02. However, there is

still evidence that negative returns occur during periods when the largest eigenvalue

is much greater than the sum of the small eigenvalues. The reverse, though less

marked, is also indicated.

5. Conclusions

The multiscale correlation structure of multivariate financial time series was stud-

ied by investigation of the eigenvalue spectrum of the equal-time cross-correlation

matrix.

(1) Using the MODWT and a sliding window, the dynamics of the largest eigen-

value of the correlation matrix were examined and shown to be time dependent

(Fig. 1). Similar dynamics were visible across all scales, but with particular

features markedly apparent at certain scales. This suggests that the correla-

tion matrix between stocks comprises interactions between stocks, traded by

investors with different time horizons.

(2) Large and small eigenvalues demonstrated the expected repulsion across all

scales (Fig. 2).

(3) A partition of the time normalised eigenvalues demonstrated quantitatively that

the largest eigenvalue is greatest (smallest) during drawdowns (drawups). Small
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eigenvalues were, in general, found to be more sensitive than large eigenvalues

to the behaviour of the market, with this persisting across all scales. This sug-

gests that underlying state of the market is more important to the correlation

structure than the time horizons of different traders.

Clearly indicated by these results is a need to study the correlation structure

of high-frequency stock data (to assess the influence on market crashes). In partic-

ular, high-frequency investigation will also reveal scaling behaviour of correlations

(The Epps effect) and prove more effective in the prediction process. Frequency

decomposition, through the use of wavelet energy at different scales, will enable the

determination of Market drawdown (drawup) features.

References

[1] Laloux, L., Cizeau, P., Bouchaud, J., Potters, M., Noise dressing of financial cor-

relation matrices, Phys. Rev. Lett. 83 (7) (1999) 1467-1470.
[2] Plerou, Gopikrishnan, Rosenow, Amaral, Gurh, T, Stanley, H.E., Universal and

non-universal properties of cross-correlations in financial time series, Phys. Rev.
Lett. 83 (1999) 1471-1474.

[3] Laloux, L., Cizeau, P., Potters, M., Bouchaud, J., Random matrix theory and fi-

nancial correlations, Int. J. Theoret. & Appl. Finance 3 (3) (2000) 391-397.
[4] Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L., Stanley, H.E., A random

matrix approach to cross-correlations in financial data, Phys. Rev. E 65 (2000)
066126.

[5] Gopikrishnan, P., Rosenow, B., Plerou, V., Stanley, H.E., Identifying business sec-

tors from stock price fluctuations, Phys. Rev. E 64 (2001) 035106R.
[6] Utsugi, A., Ino, K., Oshikawa, M., Random matrix theory analysis of cross-

correlations in financial markets, Phys. Rev. E 70 (2004) 026110.
[7] Wilcox, D., Gebbie, T., On the analysis of cross-correlations in South African

market data, Physica A 344 (1-2) (2004) 294-298.
[8] Sharifi, S., Crane, M., Shamaie, A., Ruskin, H.J., Physica A 335 (3-4) (2004)

629-643
[9] Conlon, T., Ruskin, H.J., Crane, M., Physica A 382 (2) (2007) 565-576

[10] Conlon, T., Crane, M., Ruskin, H.J., Physica A (2008) 5197-5204
[11] Conlon, T., Ruskin, H.J., Crane, M., Cross-Correlation Dynamics in Financial

Time Series, Submitted: Physica A (2008)
[12] Schindler, K., Leung, H., Elger, C.E., Lehnertz, K., Brain 130 (2007) 65-77
[13] Kwapien, J., Drozdz, S., Ionannides A.A., Phys. Rev. E 62 (2000) 5557-5564
[14] Guhr, T., Kälber, B., J. Phys. A 35 (2003) 3009-3032
[15] Burda, Z., Görlich, A., Jarosz, A., Jurkiewicz, J., Physica A 343 (2004) 295-310
[16] Burda, Z., Jurkiewicz, J., Physica A 344 1-1 (2004) 67-72
[17] Malevergne, Y., Sornette, D., Physica A 331 3-4 (2004) 660-668
[18] Kwapien, J., Drozdz, S., Oswiecimka, P., Physica A 359 (2006) 589-606
[19] Drozdz, S., Gruemmer, F., Ruf, F., Speth, J., Physica A 287 (2000) 440-449
[20] Drozdz, S., Gruemmer, F., Ruf, F., Speth, J., Physica A 294 (2001) 226-234
[21] Müller, M., Baier, G., Galka, A., Stephani, U., Muhle, H., Phys. Rev. E 71 (2005)

046116
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[27] Gençay, R., Selcuk F., Whitcher B., Quant. Financ. 3, (2003) 108-116
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