4,402 research outputs found
Towards Transparency of IoT Message Brokers
In this paper we propose an ontological model for documenting provenance of MQTT message brokers to enhance the transparency of interactions between IoT agents
The Field-Tuned Superconductor-Insulator Transition with and without Current Bias
The magnetic-field-tuned superconductor-insulator transition has been studied
in ultrathin Beryllium films quench-condensed near 20 K. In the zero-current
limit, a finite-size scaling analysis yields the scaling exponent product vz =
1.35 +/- 0.10 and a critical sheet resistance R_{c} of about 1.2R_{Q}, with
R_{Q} = h/4e^{2}. However, in the presence of dc bias currents that are smaller
than the zero-field critical currents, vz becomes 0.75 +/- 0.10. This new set
of exponents suggests that the field-tuned transitions with and without dc bias
currents belong to different universality classes.Comment: RevTex 4 pages, 4 figures, and 1 table minor change
Vertex routing models
A class of models describing the flow of information within networks via
routing processes is proposed and investigated, concentrating on the effects of
memory traces on the global properties. The long-term flow of information is
governed by cyclic attractors, allowing to define a measure for the information
centrality of a vertex given by the number of attractors passing through this
vertex. We find the number of vertices having a non-zero information centrality
to be extensive/sub-extensive for models with/without a memory trace in the
thermodynamic limit. We evaluate the distribution of the number of cycles, of
the cycle length and of the maximal basins of attraction, finding a complete
scaling collapse in the thermodynamic limit for the latter. Possible
implications of our results on the information flow in social networks are
discussed.Comment: 12 pages, 6 figure
The effect of subchronic supplementation with folic acid on homocysteine induced seizures
Influence of folic acid on the CNS is still unclear. Folate has a neuroprotective effect, while on the other hand excess folate can exacerbate seizures in epileptics. The aim of the present study was to examine the effect of subchronic administration of folic acid on behavioural and electroencephalographic (EEG) characteristics of DL homocysteine thiolactone induced seizures in adult rats. The activity of Na+/K+-ATPase and Mg2+-ATPase in different brain regions was investigated. Adult male Wistar rats were divided into groups: 1. Controls (C, 0.9% NaCl); 2. DL homocysteine-thiolactone 8.0 mmol/kg (H); 3. Subchronic supplementation with folic acid 5 mg/kg for 7 days (F) and 4. Subchronic supplementation with F + single dose of H (FH). Seizure behaviour was assessed by incidence, latency, number and intensity of seizure episodes. Seizure severity was described by a descriptive scale with grades 0–4. For EEG recordings, three gold-plated recording electrodes were implanted into the skull. Subchronic supplementation with folic acid did not affect seizure incidence, median number of seizure episodes and severity in FH, comparison with H (p > 0.05). The majority of seizure episodes in all groups were of grade 2. There were no significant differences in lethal outcomes at 24 h upon H injection in the FH vs. H group. The activity of Na+/K+-ATPase and Mg2+-ATPase was significantly increased in almost all examined structures in the FH vs. H group. Subchronic folic acid administration did not exacerbate H induced seizures and completely recovered the activity of ATPases
Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure
Measurements of thermal activation are made in a superconducting, niobium
Persistent-Current (PC) qubit structure, which has two stable classical states
of equal and opposite circulating current. The magnetization signal is read out
by ramping the bias current of a DC SQUID. This ramping causes time-ordered
measurements of the two states, where measurement of one state occurs before
the other. This time-ordering results in an effective measurement time, which
can be used to probe the thermal activation rate between the two states.
Fitting the magnetization signal as a function of temperature and ramp time
allows one to estimate a quality factor of 10^6 for our devices, a value
favorable for the observation of long quantum coherence times at lower
temperatures.Comment: 14 pages, 4 figure
Gravitational Collapse of Dust with a Cosmological Constant
The recent analysis of Markovic and Shapiro on the effect of a cosmological
constant on the evolution of a spherically symmetric homogeneous dust ball is
extended to include the inhomogeneous and degenerate cases. The histories are
shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.
A novel fabrication approach for multifunctional graphene-based thin film nano-composite membranes with enhanced desalination and antibacterial characteristics
A practical fabrication technique is presented to tackle the trade-off between the water flux and salt rejection of thin film composite (TFC) reverse osmosis (RO) membranes through controlled creation of a thinner active selective polyamide (PA) layer. The new thin film nano-composite (TFNC) RO membranes were synthesized with multifunctional poly tannic acid-functionalized graphene oxide nanosheets (pTA-f-GO) embedded in its PA thin active layer, which is produced through interfacial polymerization. The incorporation of pTA-f-GOL into the fabricated TFNC membranes resulted in a thinner PA layer with lower roughness and higher hydrophilicity compared to pristine membrane. These properties enhanced both the membrane water flux (improved by 40%) and salt rejection (increased by 8%) of the TFNC membrane. Furthermore, the incorporation of biocidal pTA-f-GO nanosheets into the PA active layer contributed to improving the antibacterial properties by 80%, compared to pristine membrane. The fabrication of the pTA-f-GO nanosheets embedded in the PA layer presented in this study is a very practical, scalable and generic process that can potentially be applied in different types of separation membranes resulting in less energy consumption, increased cost-efficiency and improved performance.Hanaa M. Hegab, Ahmed ElMekawy, Thomas G. Barclay, Andrew Michelmore, Linda Zou, Dusan Losic, Christopher P. Saint and Milena Ginic-Markovi
Can greater muscularity in larger individuals resolve the 3/4 power-law controversy when modelling maximum oxygen uptake?
BACKGROUND: The power function relationship, MR = a.m(b), between metabolic rate (MR) and body mass m has been the source of much controversy amongst biologists for many years. Various studies have reported mass exponents (b) greater than the anticipated 'surface-area' exponent 0.67, often closer to 0.75 originally identified by Kleiber. AIM: The study aimed to provide a biological explanation for these 'inflated' exponents when modelling maximum oxygen uptake (max), based on the observations from this and previous studies that larger individuals develop disproportionately more muscle mass in the arms and legs. RESEARCH DESIGN AND SUBJECTS: A cross-sectional study of 119 professional soccer players from Croatia aged 18-34 was carried out. RESULTS: Here we confirm that the power function relationship between max and body mass of the professional soccer players results in an 'inflated' mass exponent of 0.75 (95% confidence interval from 0.56 to 0.93), but also the larger soccer players have disproportionately greater leg muscle girths. When the analysis was repeated incorporating the calf and thigh muscle girths rather than body mass as predictor variables, the analysis not only explained significantly more of the variance in max, but the sum of the exponents confirmed a surface-area law. CONCLUSIONS: These findings confirm the pitfalls of fitting body-mass power laws and suggest using muscle-girth methodology as a more appropriate way to scale or normalize metabolic variables such as max for individuals of different body sizes
Gravitational Collapse: Expanding and Collapsing Regions
We investigate the expanding and collapsing regions by taking two well-known
spherically symmetric spacetimes. For this purpose, the general formalism is
developed by using Israel junction conditions for arbitrary spacetimes. This
has been used to obtain the surface energy density and the tangential pressure.
The minimal pressure provides the gateway to explore the expanding and
collapsing regions. We take Minkowski and Kantowski-Sachs spacetimes and use
the general formulation to investigate the expanding and collapsing regions of
the shell.Comment: 12 pages, 4 figures, accepted for publication in Gen. Relativ. Gra
- …
