196 research outputs found
AGE-RELATED EFFECTS OF INCREASING POSTURAL CHALLENGE ON EYE MOVEMENT ONSET LATENCIES TO VISUAL TARGETS
When a single light cue is given in the visual field, our eyes orient towards it with an average latency of 200 ms. If a second cue is presented at or around the time of the response to the first, a secondary eye movement occurs that represents a re-orientation to the new target. While studies have shown that eye movement latencies to ‘single-step’ targets may or may not be lengthened with age, secondary eye-movements (during ‘double-step’ displacements) are significantly delayed with increasing age. The aim of this study was to investigate if the postural challenge posed simply by standing (as opposed to sitting) results in significantly longer eye movement latencies in older adults compared to the young. Ten young (65 years) participated in the study. They were required to fixate upon a central target and move their eyes in response to 2 types of stimuli: 1) a single-step perturbation of target position either 15º to the right or left, and 2) a double-step target displacement incorporating an initial target jump to the right or left by 15º, followed after 200 ms, by a shift of target position to the opposite side (e.g., +15º then -15º). All target displacement conditions were executed in sit and stand positions with the participant at the same distance from the targets. Eye movements were recorded using electro-oculography. Older adults did not show significantly longer eye movement latencies than the younger adults for single-step target displacements, and postural configuration (stand compared to sit) had no effect upon latencies for either group. We categorised double-step trials into those during which the second light changed after or before the onset of the eye shift to the first light. For the former category, young participants showed faster secondary eye shifts to the second light in the standing position, while the older adults did not. For the latter category of double-step trial, young participants showed no significant difference between sit and stand secondary eye movement latencies, but older adults were significantly longer standing compared to sitting. The older adults were significantly longer than the younger adults across both postural conditions, regardless of when the second light change occurred during the eye shift to the first light. We suggest that older adults require greater time and perhaps attentional processes to execute eye movements to unexpected changes of target position when faced with the need to maintain standing balance. Keywords: Balance, Ageing, Gaze, Electro-oculography, Target perturbations
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies
Review of referrals reveal the impact of referral content on the triage and management of ophthalmology wait lists
Objectives Many chronic eye conditions are managed within public hospital ophthalmology clinics resulting in encumbered wait lists. Integrated care schemes can increase system capacity. In order to direct implementation of a public hospital-based integrated eye care model, this study aims to evaluate the quality of referrals for new patients through information content, assess triage decisions of newly referred patients and evaluate the consistency of referral content for new patients referred multiple times. Design A retrospective and prospective review of all referral forms for new patients referred to a public hospital ophthalmology clinic between January 2016 and September 2017, and September 2017 and August 2018, respectively. Setting A referral-only public hospital ophthalmology clinic in metropolitan Sydney, Australia. Participants 418 new patients on existing non-urgent wait lists waiting to be allocated an initial appointment, and 528 patients who were newly referred. Primary and secondary outcome measures The primary outcome was the information content of referrals for new patients. The secondary outcomes were triage outcomes for new incoming referrals, and the number of new patients with multiple referrals. Results Of the wait-listed referrals, 0.2% were complete in referral content compared with 9.8% of new incoming referrals (p<0.001). Of new incoming referrals, 56.7% were triaged to a non-urgent clinic. Multiple referrals were received for 49 patients, with no change in the amount of referral content. Conclusions Most referrals were incomplete in content, leading to triage based on limited clinical information. Some new patients were referred multiple times with their second referral containing a similar amount of content as their first. Lengthy wait lists could be prevented by improving administrative processes and communication between the referral centre and referrers. The future implementation of an integrated eye care model at the study setting could sustainably cut wait lists for patients with chronic eye conditions
Glycerol monolaurate inhibits lipase production by clinical ocular isolates without affecting bacterial cell viability
PURPOSE. We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. METHODS. Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 106/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 378C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. RESULTS. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dosedependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P \u3c 0.05) lipase inhibition above concentrations of 15 μg /mL in S. aureus and was not cytotoxic up to 25 μg /mL. For S. epidermidis, GML showed significant (P \u3c 0.05) lipase inhibition above 7.5 μg /mL. CONCLUSIONS. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability
Temporal characteristics of sodium fluorescein in the tear meniscus
Purpose
To observe the emission intensity profile of sodium fluorescein in the human tear film as a function of time and concentration.
Methods
Twenty-two participants with no dry eye signs or symptoms were randomly allocated to receive 1 μL of either a 2 or 10% concentration of fluorescein to one eye. Images of the inferior tear meniscus were captured at regular intervals over 30 minutes and the process repeated for the other eye with the alternate concentration. Fluorescence intensity was quantified on the basis of the grayscale pixel values in the tear meniscus images. The fluorescein-decay profile over time and between concentrations was determined.
Results
Peak fluorescence intensity was reached in 3.9 ± 3.0 and 8.7 ± 4.4 minutes after instillation for the 2 and 10% concentrations, respectively. The 10% concentration of fluorescein maintained its peak fluorescence intensity longer than the 2% concentration (about 9 and 2 minutes, respectively). The peak fluorescence intensity was not significantly different between the higher and lower concentrations (44 ± 37 vs. 38 ± 32 units, P = .22). For both concentrations, the observed intensity did not return to baseline levels by the end of the 30-minute observation time.
Conclusions
The fluorescence intensity of fluorescein in a clinical setting varies with time such that both the onset and duration of maximum brightness are concentration dependent. At low concentration (2%), maximum brightness occurs almost immediately after instillation and lasts about 2 minutes. With a higher concentration (10%), the effective working window is delayed for about 7 to 8 minutes. Irrespective of initial concentration, observable fluorescence remains in the tear film beyond 30 minutes post-instillation
Corneal dendritic cells and the subbasal nerve plexus following neurotoxic treatment with oxaliplatin or paclitaxel
Immune cell infiltration has been implicated in neurotoxic chemotherapy for cancer treatment. However, our understanding of immune processes is still incomplete and current methods of observing immune cells are time consuming or invasive. Corneal dendritic cells are potent antigen-presenting cells and can be imaged with in-vivo corneal confocal microscopy. Corneal dendritic cell densities and nerve parameters in patients treated with neurotoxic chemotherapy were investigated. Patients treated for cancer with oxaliplatin (n = 39) or paclitaxel (n = 48), 3 to 24 months prior to assessment were recruited along with 40 healthy controls. Immature (ImDC), mature (MDC) and total dendritic cell densities (TotalDC), and corneal nerve parameters were analyzed from in-vivo corneal confocal microscopy images. ImDC was increased in the oxaliplatin group (Median, Md = 22.7 cells/mm2) compared to healthy controls (Md = 10.1 cells/mm2, p = 0.001), but not in the paclitaxel group (Md = 10.6 cells/mm2). ImDC was also associated with higher oxaliplatin cumulative dose (r = 0.33, p = 0.04) and treatment cycles (r = 0.40, p = 0.01). There was no significant difference in MDC between the three groups (p > 0.05). Corneal nerve parameters were reduced in both oxaliplatin and paclitaxel groups compared to healthy controls (p < 0.05). There is evidence of elevation of corneal ImDC in oxaliplatin-treated patients. Further investigation is required to explore this potential link through longitudinal studies and animal or laboratory-based immunohistochemical research
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies
A cross-sectional study of ocular surface discomfort and corneal nerve dysfunction after paclitaxel treatment for cancer
Ocular surface dysfunction is common in patients receiving anti-cancer drug treatment. The effects of paclitaxel, a neurotoxic chemotherapeutic drug, on ocular surface discomfort associated with dry eye disease was investigated. Patients with cancer who had completed paclitaxel treatment between 3 and 24 months prior to assessment (n = 29) and age- and sex-matched healthy control subjects (n = 29) were recruited and assessed with the Ocular Surface Disease Index (OSDI) to measure ocular surface discomfort. In-vivo corneal confocal microscopy was used to evaluate corneal nerve parameters in the right eye. Peripheral neurotoxicity was assessed using patient-reported outcomes and clinical grading scales. The paclitaxel group had significantly worse OSDI total scores compared with controls (Median, Md = 19.3 and Md = 0, p = 0.007, respectively). Corneal nerve fiber and inferior whorl lengths were reduced in the paclitaxel group compared with controls (14.2 ± 4.0 and 14.4 ± 4.0 mm/mm2 vs. 16.4 ± 4.0 and 16.9 ± 4.9 mm/mm2, respectively, p = 0.04). When analyzed by presence of peripheral neuropathy, paclitaxel-treated patients with neuropathy showed worse OSDI total scores compared to those without peripheral neuropathy post-treatment (p = 0.001) and healthy controls (p < 0.001). More severe ocular discomfort and worse visual function was associated with greater peripheral neurotoxicity symptoms (r = 0.60, p = 0.001) and neuropathy severity (r = 0.49, p = 0.008), respectively. Patients who have been treated with paclitaxel have a higher risk of ocular surface discomfort associated with dry eye disease, particularly those with peripheral neuropathy. Future longitudinal studies should investigate the clinical impact of corneal nerve reduction in dry eye disease
TFOS Lifestyle: Impact of nutrition on the ocular surface: TFOS Lifestyle Workshop: Nutrition report
Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials
BCLA CLEAR Presbyopia: Definitions
Presbyopia is often the first sign of ageing experienced by humans. Standardising terminology and adopting it across the BCLA CLEAR Presbyopia reports, improves consistency in the communication of the evidence-based understanding of this universal physiological process. Presbyopia can be functionally and psychologically debilitating, especially for those with poor access to eyecare. Presbyopia was defined as occurring when the physiologically normal age-related reduction in the eye's focusing range reaches a point that, when optimally corrected for far vision, the clarity of vision at near is insufficient to satisfy an individual's requirements. Accommodation is the change in optical power of the eye due to a change in crystalline lens shape and position, whereas pseudo-accommodation is the attainment of functional near vision in an emmetropic or far-corrected eye without changing the refractive power of the eye. Other definitions specific to vision and lenses for presbyopia were also defined. It is recommended that these definitions be consistently adopted in order to standardise future research, clinical evaluations and education
- …
