3,256 research outputs found

    Stretching and relaxation dynamics in double stranded DNA

    Get PDF
    We study numerically the mechanical stability and elasticity properties of duplex DNA molecules within the frame of a network model incorporating microscopic degrees of freedom related with the arrangement of the base pairs. We pay special attention to the opening-closing dynamics of double-stranded DNA molecules which are forced into non-equilibrium conformations. Mechanical stress imposed at one terminal end of the DNA molecule brings it into a partially opened configuration. We examine the subsequent relaxation dynamics connected with energy exchange processes between the various degrees of freedom and structural rearrangements leading to complete recombination to the double-stranded conformation. The similarities and differences between the relaxation dynamics for a planar ladder-like DNA molecule and a twisted one are discussed in detail. In this way we show that the attainment of a quasi-equilibrium regime proceeds faster in the case of the twisted DNA form than for its thus less flexible ladder counterpart. Furthermore we find that the velocity of the complete recombination of the DNA molecule is lower than the velocity imposed by the forcing unit which is in compliance with the experimental observations for the opening-closing cycle of DNA molecules.Comment: 21 pages, 9 figure

    Comment on "Why is the DNA denaturation transition first order?"

    Get PDF
    In this comment we argue that while the conclusions in the original paper (Y. Kafri, D. Mukamel and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000)) are correct for asymptotically long DNA chains, they do not apply to the chains used in typical experiments. In the added last paragraph, we point out that for real DNA the average distance between denatured loops is not of the order of the persistence length of a single-stranded chain but much larger. This corroborates our reasoning that the double helix between loops is quite rigid, and thereby our conclusion.Comment: 1 page, REVTeX. Last paragraph adde

    Elasticity model of a supercoiled DNA molecule

    Full text link
    Within a simple elastic theory, we study the elongation versus force characteristics of a supercoiled DNA molecule at thermal equilibrium in the regime of small supercoiling. The partition function is mapped to the path integral representation for a quantum charged particle in the field of a magnetic monopole with unquantized charge. We show that the theory is singular in the continuum limit and must be regularised at an intermediate length scale. We find good agreement with existing experimental data, and point out how to measure the twist rigidity accurately.Comment: Latex, 4 pages. The figure contains new experimental data, giving a new determination of the twist rigidit

    Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers

    Get PDF
    When mixed together, DNA and polyaminoamide (PAMAM) dendrimers form fibers that condense into a compact structure. We use optical tweezers to pull condensed fibers and investigate the decondensation transition by measuring force-extension curves (FECs). A characteristic plateau force (around 10 pN) and hysteresis between the pulling and relaxation cycles are observed for different dendrimer sizes, indicating the existence of a first-order transition between two phases (condensed and extended) of the fiber. The fact that we can reproduce the same FECs in the absence of additional dendrimers in the buffer medium indicates that dendrimers remain irreversibly bound to the DNA backbone. Upon salt variation FECs change noticeably confirming that electrostatic forces drive the condensation transition. Finally, we propose a simple model for the decondensing transition that qualitatively reproduces the FECs and which is confirmed by AFM images.Comment: Latex version, 4 pages+3 color figure

    Elasticity and electrostatics of plectonemic DNA

    Get PDF
    We present a self-contained theory for the mechanical response of DNA in single molecule experiments. Our model is based on a 1D continuum description of the DNA molecule and accounts both for its elasticity and for DNA-DNA electrostatic interactions. We consider the classical loading geometry used in experiments where one end of the molecule is attached to a substrate and the other one is pulled by a tensile force and twisted by a given number of turns. We focus on configurations relevant to the limit of a large number of turns, which are made up of two phases, one with linear DNA and the other one with superhelical DNA. The model takes into account thermal fluctuations in the linear phase and electrostatic interactions in the superhelical phase. The values of the torsional stress, of the supercoiling radius and angle, and key features of the experimental extension-rotation curves, namely the slope of the linear region and thermal buckling threshold, are predicted. They are found in good agreement with experimental data.Comment: 19 pages and 6 figure

    Bending and Base-Stacking Interactions in Double-Stranded Semiflexible Polymer

    Full text link
    Simple expressions for the bending and the base-stacking energy of double-stranded semiflexible biopolymers (such as DNA and actin) are derived. The distribution of the folding angle between the two strands is obtained by solving a Schr\"{o}dinger equation variationally. Theoretical results based on this model on the extension versus force and extension versus degree of supercoiling relations of DNA chain are in good agreement with the experimental observations of Cluzel {\it et al.} [Science {\bf 271}, 792 (1996)], Smith {\it et al.} [{\it ibid.} {\bf 271}, 795 (1996)], and Strick {\it et al.} [{\it ibid.} {\bf 271}, 1835 (1996)].Comment: 8 pages in Revtex format, with 4 EPS figure

    Force Spectroscopy with Dual-Trap Optical Tweezers: Molecular Stiffness Measurements and Coupled Fluctuations Analysis

    Get PDF
    ABSTRACT Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies

    Unzipping Dynamics of Long DNAs

    Full text link
    The two strands of the DNA double helix can be `unzipped' by application of 15 pN force. We analyze the dynamics of unzipping and rezipping, for the case where the molecule ends are separated and re-approached at constant velocity. For unzipping of 50 kilobase DNAs at less than about 1000 bases per second, thermal equilibrium-based theory applies. However, for higher unzipping velocities, rotational viscous drag creates a buildup of elastic torque to levels above kBT in the dsDNA region, causing the unzipping force to be well above or well below the equilibrium unzipping force during respectively unzipping and rezipping, in accord with recent experimental results of Thomen et al. [Phys. Rev. Lett. 88, 248102 (2002)]. Our analysis includes the effect of sequence on unzipping and rezipping, and the transient delay in buildup of the unzipping force due to the approach to the steady state.Comment: 15 pages Revtex file including 9 figure
    • …
    corecore