The two strands of the DNA double helix can be `unzipped' by application of
15 pN force. We analyze the dynamics of unzipping and rezipping, for the case
where the molecule ends are separated and re-approached at constant velocity.
For unzipping of 50 kilobase DNAs at less than about 1000 bases per second,
thermal equilibrium-based theory applies. However, for higher unzipping
velocities, rotational viscous drag creates a buildup of elastic torque to
levels above kBT in the dsDNA region, causing the unzipping force to be well
above or well below the equilibrium unzipping force during respectively
unzipping and rezipping, in accord with recent experimental results of Thomen
et al. [Phys. Rev. Lett. 88, 248102 (2002)]. Our analysis includes the effect
of sequence on unzipping and rezipping, and the transient delay in buildup of
the unzipping force due to the approach to the steady state.Comment: 15 pages Revtex file including 9 figure