5 research outputs found

    A new material for hydrogen storage, ScAl0.8Mg0.2

    Full text link
    A novel aluminium rich alloy for hydrogen storage has been discovered, ScAl0.8Mg0.2, which has superior properties regarding hydrogen storage capacity, kinetics and stability towards air oxidation in comparison to hydrogen absorption in state-of-the-art intermetallic compounds. Detailed analysis of the hydrogen absorption in ScAl0.8Mg0.2 has been performed using in situ synchrotron radiation powder X-ray diffraction, neutron powder diffraction and quantum mechanical calculations. The results from calculations and experiments are in good agreement with each other

    Decreasing Interface Defect Densities via Silicon Oxide Passivation at Temperatures Below 450 C

    No full text
    Low-temperature (LT) passivation methods ( 700oC). Therefore, the LT passivation of SiOx/Si has been, since long, a research topic to improve applications performance. Here, we demonstrate that a LT (<450oC) ultrahigh-vacuum (UHV) treatment is a potential method that can be combined with current state-of-the-art processes in a scalable way, to decrease the defect densities at the SiOx/Si interfaces. The studied LT-UHV approach includes a combination of wet chemistry followed by UHV-based heating and pre-oxidation of silicon surfaces. The controlled oxidation during the LT-UHV treatment is found to provide an until now not reported crystalline Si oxide phase. This crystalline SiOx phase can explain the observed decrease in the defect density by halve. Furthermore, the LT-UHV treatment can be applied in a complementary, post-treatment way to ready components to decrease electrical losses. The LT-UHV treatment has been found to decrease the detector leakage current by factor of two.Peer reviewe

    Oxidation-Induced Changes in the ALD-Al2O3/InAs(100) Interface and Control of the Changes for Device Processing

    Get PDF
    InAs crystals are emerging materials for various devices like radio frequency transistors and infrared sensors. Control of oxidation-induced changes is essential for decreasing amounts of the harmful InAs surface (or interface) defects because it is hard to avoid the energetically favored oxidation of InAs surface parts in device processing. We have characterized atomic-layer-deposition (ALD) grown Al2O3/InAs interfaces, preoxidized differently, with synchrotron hard X-ray photoelectron spectroscopy (HAXPES), low-energy electron diffraction, scanning tunneling microscopy, and time-of-flight elastic recoil detection analysis. The chemical environment and core-level shifts are clarified for well-embedded InAs interfaces (12 nm Al2O3) to avoid, in particular, effects of a significant potential change at the vacuum-solid interface. High-resolution As 3d spectra reveal that the Al2O3/InAs interface, which was sputter-cleaned before ALD, includes +1.0 eV shift, whereas As 3d of the preoxidized (3 × 1)-O interface exhibits a shift of −0.51 eV. The measurements also indicate that an As2O3 type structure is not crucial in controlling defect densities. Regarding In 4d measurements, the sputtered InAs interface includes only a +0.29 eV shift, while the In 4d shift around −0.3 eV is found to be inherent for the crystalline oxidized interfaces. Thus, the negative shifts, which have been usually associated with dangling bonds, are not necessarily an indication of such point defects as previously expected. In contrast, the negative shifts can arise from bonding with O atoms. Therefore, specific care should be directed in determining the bulk-component positions in photoelectron studies. Finally, we present an approach to transfer the InAs oxidation results to a device process of high electron mobility transistors (HEMT) using an As-rich III–V surface and In deposition. The approach is found to decrease a gate leakage current of HEMT without losing the gate controllability.peerReviewe
    corecore