45 research outputs found

    Xenopus as a model for GI/pancreas disease

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Current Pathobiology Reports 3 (2015): 137-145, doi:10.1007/s40139-015-0076-0.Diseases affecting endodermal organs like the pancreas, lung and gastrointestinal (GI) tract have a substantial impact on human welfare. Since many of these are congenital defects that arise as a result of defects during development broad efforts are focused on understanding the development of these organs so as to better identify risk factors, disease mechanisms and therapeutic targets. Studies implementing model systems, like the amphibian Xenopus, have contributed immensely to our understanding of signaling (e.g. Wnt, FGF, BMP, RA) pathways and gene regulation (e.g. hhex, ptf1a, ngn3) that underlie normal development as well as disease progression. Recent advances in genome engineering further enhance the capabilities of the Xenopus model system for pursuing biomedical research, and will undoubtedly result in a boom of new information underlying disease mechanisms ultimately leading to advancements in diagnosis and therapy.2016-04-0

    CRISPR/Cas9 mediated mutation of the mtnr1a melatonin receptor gene causes rod photoreceptor degeneration in developing Xenopus tropicalis

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wiechmann, A. F., Martin, T. A., & Horb, M. E. CRISPR/Cas9 mediated mutation of the mtnr1a melatonin receptor gene causes rod photoreceptor degeneration in developing Xenopus tropicalis. Scientific Reports, 10(1), (2020): 13757, doi:10.1038/s41598-020-70735-2.Nighttime surges in melatonin levels activate melatonin receptors, which synchronize cellular activities with the natural light/dark cycle. Melatonin receptors are expressed in several cell types in the retina, including the photon-sensitive rods and cones. Previous studies suggest that long-term photoreceptor survival and retinal health is in part reliant on melatonin orchestration of circadian homeostatic activities. This scenario would accordingly envisage that disruption of melatonin receptor signaling is detrimental to photoreceptor health. Using in vivo CRISPR/Cas9 genomic editing, we discovered that a small deletion mutation of the Mel1a melatonin receptor (mtnr1a) gene causes a loss of rod photoreceptors in retinas of developing Xenopus tropicalis heterozygous, but not homozygous mutant tadpoles. Cones were relatively spared from degeneration, and the rod loss phenotype was not obvious after metamorphosis. Localization of Mel1a receptor protein appeared to be about the same in wild type and mutant retinas, suggesting that the mutant protein is expressed at some level in mutant retinal cells. The severe impact on early rod photoreceptor viability may signify a previously underestimated critical role in circadian influences on long-term retinal health and preservation of sight. These data offer evidence that disturbance of homeostatic, circadian signaling, conveyed through a mutated melatonin receptor, is incompatible with rod photoreceptor survival.The National Xenopus Resource (NXR) Genome Editing Workshop conducted at the Marine Biological Laboratory (MBL) contributed to the early development of this project (A.F.W. & M.E.H). We thank Dr. Marcin Wlizla, Sean McNamara, Rosie Falco, and Dr. Will Ratzen of the NXR and MBL for their advice and assistance with the F0 founders. We thank Cynthia Bulmer of the NIH Diabetes CoBRE (P20GM104934) Core Histology Facility at the University of Oklahoma Health Sciences Center (OUHSC) for preparing the histology specimens. We thank Dr. David Sherry of OUHSC for critically reading the initial version of the manuscript and his helpful advice during this study

    Expanding the genetic toolkit in Xenopus : approaches and opportunities for human disease modeling

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Developmental Biology 426 (2017): 325-335, doi:10.1016/j.ydbio.2016.04.009.The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations.This work was supported by the National Institutes of Health (P40 OD010997 to M.E.H., R01 HD084409 to M.E.H., R01 HL112618 to P.T. and F.C., and R01 HL127640 to P.T. and F.C.; and the U.S. Environmental Protection Agency (G11E10367 to D.F.)

    Generation of a Xenopus laevis F1 albino J strain by genome editing and oocyte host-transfer

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Developmental Biology 426 (2017): 188–193, doi:10.1016/j.ydbio.2016.03.006.Completion of the Xenopus laevis genome sequence from inbred J strain animals has facilitated the generation of germline mutant X. laevis using targeted genome editing. In the last few years, numerous reports have demonstrated that TALENs are able to induce mutations in F0 Xenopus embryos, but none has demonstrated germline transmission of such mutations in X. laevis. In this report we used the oocyte host-transfer method to generate mutations in both tyrosinase homeologs and found highly-penetrant germline mutations; in contrast, embryonic injections yielded few germline mutations. We also compared the distribution of mutations in several F0 somatic tissues and germ cells and found that the majority of mutations in each tissue were different. These results establish that X. laevis J strain animals are very useful for generating germline mutations and that the oocyte host-transfer method is an efficient technique for generating mutations in both homeologs.This work was supported by grants from the NIH (OD010997 and HD084409)

    Experimental Conversion of Liver to Pancreas

    Get PDF
    AbstractBackground: The liver and the pancreas arise from adjacent regions of endoderm in embryonic development. Pdx1 is a key transcription factor that is essential for the development of the pancreas and is not expressed in the liver. The aim of this study was to determine whether a gene overexpression protocol based on Pdx1 would be able to cause conversion of liver to pancreas.Results: We show that a modified form of Pdx1, carrying the VP16 transcriptional activation domain, can cause conversion of liver to pancreas, both in vivo and in vitro. Transgenic Xenopus tadpoles carrying the construct TTR-Xlhbox8-VP16:Elas-GFP were prepared. Xlhbox8 is the Xenopus homolog of Pdx1, the TTR (transthyretin) promoter directs expression to the liver, and the GFP is under the control of an elastase promoter and provides a real-time visible marker of pancreatic differentiation. In the transgenic tadpoles, part or all of the liver is converted to pancreas, containing both exocrine and endocrine cells, while liver differentiation products are lost from the regions converted to pancreas. The timing of events is such that the liver is differentiating by the time Xlhbox8-VP16 is expressed, so we consider this a transdifferentiation event rather than a reprogramming of embryonic development. Furthermore, this same construct will bring about transdifferentiation of human hepatocytes in culture, with formation of both exocrine and endocrine cells.Conclusions: We consider that the conversion of liver to pancreas could be the basis of a new type of therapy for insulin-dependent diabetes. Although expression of the transgene is transient, once the ectopic pancreas is established, it persists thereafter

    Inbreeding ratio and genetic relationships among strains of the Western clawed frog, Xenopus tropicalis

    Get PDF
    The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts

    Transcriptomic insights into genetic diversity of protein-coding genes in X. laevis

    Get PDF
    © The Author(s), 2017. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Developmental Biology 424 (2017): 181-188, doi:10.1016/j.ydbio.2017.02.019We characterize the genetic diversity of Xenopus laevis strains using RNA-seq data and allele- specific analysis. This data provides a catalogue of coding variation, which can be used for improving the genomic sequence, as well as for better sequence alignment, probe design, and proteomic analysis. In addition, we paint a broad picture of the genetic landscape of the species by functionally annotating different classes of mutations with a well-established prediction tool (PolyPhen-2). Further, we specifically compare the variation in the progeny of four crosses: inbred genomic (J)- strain, outbred albino (B)-strain, and two hybrid crosses of J and B strains. We identify a subset of mutations specific to the B strain, which allows us to investigate the selection pressures affecting duplicated genes in this allotetraploid. From these crosses we find the ratio of non-synonymous to synonymous mutations is lower in duplicated genes, which suggests that they are under greater purifying selection. Surprisingly, we also find that function-altering ("damaging") mutations constitute a greater fraction of the non-synonymous variants in this group, which suggests a role for subfunctionalization in coding variation affecting duplicated genes.L.P. was supported by the NIH grant R01HD073104, also L.P., A.N. and V.S. were supported by R21HD81675, M.H. and E.P. by P40 OD010997.2018-03-0

    Developing immortal cell lines from Xenopus embryos, four novel cell lines derived from Xenopus tropicalis

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gorbsky, G. J., Daum, J. R., Sapkota, H., Summala, K., Yoshida, H., Georgescu, C., Wren, J. D., Peshkin, L., & Horb, M. E. Developing immortal cell lines from Xenopus embryos, four novel cell lines derived from Xenopus tropicalis. Open Biology, 12(7), (2022): 220089, https://doi.org/10.1098/rsob.220089.The diploid anuran Xenopus tropicalis has emerged as a key research model in cell and developmental biology. To enhance the usefulness of this species, we developed methods for generating immortal cell lines from Nigerian strain (NXR_1018, RRID:SCR_013731) X. tropicalis embryos. We generated 14 cell lines that were propagated for several months. We selected four morphologically distinct lines, XTN-6, XTN-8, XTN-10 and XTN-12 for further characterization. Karyotype analysis revealed that three of the lines, XTN-8, XTN-10 and XTN-12 were primarily diploid. XTN-6 cultures showed a consistent mixed population of diploid cells, cells with chromosome 8 trisomy, and cells containing a tetraploid content of chromosomes. The lines were propagated using conventional culture methods as adherent cultures at 30°C in a simple, diluted L-15 medium containing fetal bovine serum without use of a high CO2 incubator. Transcriptome analysis indicated that the four lines were distinct lineages. These methods will be useful in the generation of cell lines from normal and mutant strains of X. tropicalis as well as other species of Xenopus.This work was supported by Whitman fellowships to G.J.G. from the Marine Biological Laboratory, by grant no. 1645105 to G.J.G. and MEH from the National Science Foundation and by grant no. P40OD010997 from the Office of the Director, National Institutes of Health. L.P. has been supported by grant no. R01HD073104 from the National Institute of Child Health and Development

    A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Furman, B. L. S., Cauret, C. M. S., Knytl, M., Song, X. Y., Premachandra, T., Ofori-Boateng, C., Jordan, D. C., Horb, M. E., & Evans, B. J. (2020). A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genetics, 16(11), e1009121, doi:10.1371/journal.pgen.1009121.In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among—and even within—species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.This work was supported by the Natural Science and Engineering Research Council of Canada (RGPIN-2017-05770) (BJE), Resource Allocation Competition awards from Compute Canada (BJE), the Whitman Center Fellowship Program at the Marine Biological Laboratory (BJE), the Museum of Comparative Zoology at Harvard University (BJE), and National Institutes of Health grants R01-HD084409 (MEH) and P40-OD010997 (MEH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Naert, T., Tulkens, D., Edwards, N. A., Carron, M., Shaidani, N. I., Wlizla, M., Boel, A., Demuynck, S., Horb, M. E., Coucke, P., Willaert, A., Zorn, A. M., & Vleminckx, K. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Scientific Reports, 10(1), (2020): 14662, doi:10.1038/s41598-020-71412-0.CRISPR/Cas9 genome editing has revolutionized functional genomics in vertebrates. However, CRISPR/Cas9 edited F0 animals too often demonstrate variable phenotypic penetrance due to the mosaic nature of editing outcomes after double strand break (DSB) repair. Even with high efficiency levels of genome editing, phenotypes may be obscured by proportional presence of in-frame mutations that still produce functional protein. Recently, studies in cell culture systems have shown that the nature of CRISPR/Cas9-mediated mutations can be dependent on local sequence context and can be predicted by computational methods. Here, we demonstrate that similar approaches can be used to forecast CRISPR/Cas9 gene editing outcomes in Xenopus tropicalis, Xenopus laevis, and zebrafish. We show that a publicly available neural network previously trained in mouse embryonic stem cell cultures (InDelphi-mESC) is able to accurately predict CRISPR/Cas9 gene editing outcomes in early vertebrate embryos. Our observations can have direct implications for experiment design, allowing the selection of guide RNAs with predicted repair outcome signatures enriched towards frameshift mutations, allowing maximization of CRISPR/Cas9 phenotype penetrance in the F0 generation.Research in the Vleminckx laboratory is supported by the Research Foundation—Flanders (FWO-Vlaanderen) (Grants G0A1515N and G029413N), by the Belgian Science Policy (Interuniversity Attraction Poles—IAP7/07) and by the Concerted Research Actions from Ghent University (BOF15/GOA/011). Further support was obtained by the Hercules Foundation, Flanders (Grant AUGE/11/14) and the Desmoid Tumor Research Foundation and the Desmoid Tumour Foundation Canada. T.N. is funded by “Kom op tegen Kanker” (Stand up to Cancer), the Flemish cancer society and previously held PhD fellowship with VLAIO-HERMES during the course of this work. D.T. and M. C. hold a PhD fellowship from the Research Foundation-Flanders (FWO-Vlaanderen). The Zorn Lab is supported by Funding from NIH National Institute of Child Health and Human Development (NICHD) P01 HD093363. A.W. and A.B. are supported by the Ghent University (Universiteit Gent) Methusalem grant BOFMET2015000401 to Anne De Paepe. The National Xenopus Resource and Horb lab is supported by funding from the National Institutes of Health (P40 OD010997 and R01 HD084409)
    corecore