Transcriptomic Insights into Genetic Diversity of Protein-Coding Genes in *X. laevis*.

Authors: Virginia Savova^{1,3}, Esther J Pearl², Elvan Boke¹, Anwesha Nag³, Ivan Adzhubei⁴, Marko E. Horb², Leonid Peshkin^{1#}

Affiliations:

¹ Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

² National Xenopus Resource and Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA.

³ Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215, USA

⁴ Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

Corresponding author

I

I Abstract

We characterize the genetic diversity of Xenopus laevis strains using RNA-seg data and allele-2 specific analysis. This data provides a catalogue of coding variation, which can be used for improving 3 the genomic sequence, as well as for better sequence alignment, probe design, and proteomic 4 analysis. In addition, we paint a broad picture of the genetic landscape of the species by functionally 5 annotating different classes of mutations with a well-established prediction tool (PolyPhen-2). 6 Further, we specifically compare the variation in the progeny of four crosses: inbred genomic (J)-7 strain, outbred albino (B)-strain, and two hybrid crosses of J and B strains. We identify a subset of 8 mutations specific to the B strain, which allows us to investigate the selection pressures affecting 9 duplicated genes in this allotetraploid. From these crosses we find the ratio of non-synonymous to 10 synonymous mutations is lower in duplicated genes, which suggests that they are under greater II purifying selection. Surprisingly, we also find that function-altering ("damaging") mutations constitute 12 a greater fraction of the non-synonymous variants in this group, which suggests a role for 13 subfunctionalization in coding variation affecting duplicated genes. I4

I Introduction

A systematic understanding of the genetic basis of human disease and its underlying cellular and 2 molecular mechanisms is dependent on model organisms that can both capture the pathology under 3 investigation and provide tools for functional studies. From mammalian to invertebrate models, each 4 organism offers tradeoffs between genomic and physiologic similarity to humans as well as the 5 availability, scalability and cost of functional assays. Historically, Xenopus has been an excellent 6 model for cell biological and embryological studies, such as for functional analysis of cell cycle control 7 and cloning (Gurdon, 2013; Hunt, 2002), but has been less utilized as a genetic model. The recent 8 arrival of high quality chromosome level genomic sequence and protein coding gene models for X. 9 *laevis* (and X. tropicalis) is once again bringing Xenopus to the forefront of biological research 10 allowing for more genomic and genetic analyses. Already remarkably useful in enabling many unique II biochemical approaches in cell biology, embryology, and cell type differentiation, the availability of 12 high quality genome sequence data will only reinforce its strength as a model organism. 13

Xenopus is a valuable vertebrate model system because of its large size, availability of several 14 hundred embryos from each mating, rapid and synchronous ex vivo development (major organ 15 formation occurs 48 hours post-fertilization), similar organ systems (e.g. lungs, limb) and ease of 16 care. In addition, a large fraction of Xenopus genes have identifiable human orthologs for which both 17 transcriptomic and proteomic temporal expression in early development have been well characterized 18 (Peshkin et al., 2015; Yanai et al., 2011). In addition, orthologous human mRNAs (mutant or wild 19 type) are commonly used to rescue the phenotype of Xenopus mutants illustrating the benefits of 20 studying human disease causing genes in Xenopus (Davis et al., 2014; Pearl et al., 2011). These 21 features make complementation studies (del Viso et al., 2012) in Xenopus both possible and 22 attractive. 23

In this paper, we begin to examine how such genetic diversity might affect the use of different 24 inbred, transgenic and wild type animals. Immunology studies notwithstanding (Gantress et al., 2003; 25 Izutsu and Maéno, 2005), Xenopus researchers have historically used animals that are genetically 26 diverse, with little regard to their specific background. To this day, many laboratories maintain 27 colonies of *Xenopus* animals from non-genomic lines, transgenic animals or simply wild type animals. 28 Such genetic diversity in laboratory populations creates both issues and opportunities for research, 29 but a systemic analysis of these issues has not been done. Our study presents a rich resource of 30 data, enabling initial characterization of high-confidence single-nucleotide polymorphisms (SNPs) and 31 other variation (insertions and deletions a.k.a. INDELs). We discuss the general features of the data 32 and review strategies of how researchers can take advantage of these genetic variations. 33

The Xenopus laevis genome assembly is based on sequencing of the inbred J strain (Gantress et 34 al., 2003) and characterizing the diversity of the genomic line itself can contribute significantly to 35 experimental design, since accurate sequence is crucial for design and implementation of RNAi, 36 morpholinos, and more recently for CRISPR and mass spectrometry. To help address this diversity, 37 we investigate the residual heterozygosity of genomic J strain colonies that is due to the fact that the 38 J strain is not a completely inbred population. We also provide a characterization of the level of 39 polymorphisms between the J strain and an outbred line, using transcriptome sequencing of the 40 albino B strain. This characterization is important for two reasons. First, with advances in genomic 41

analyses in *Xenopus* (e.g. RNA-Seq, proteomics, genome editing) our data underlines the importance
 of using a defined genetic strain for such experiments when trying to analyze the data. Second,
 crossing an inbred strain with another line whose genomic variation is reproducible and characterized
 in depth may provide insights into functional and regulatory variation driven by differences between
 alleles. This type of experimental design has been utilized extensively in other model organisms (Cui
 et al., 2006).

Our analysis of several SNPs in protein coding genes led us to re-examine the gene duplication 7 phenomenon. X. laevis genome underwent allotetraploidization between 18 Mya (Session et al., 8 2016) to 40 Mya (Hellsten et al., 2007). As a result, duplicated gene function may either be a) 9 retained in both copies making them functionally redundant; b) lost in one of the copies where it 10 becomes a pseudogene; c) a novel and divergent gene function is acquired by one of the two copies; п or d) the original gene function becomes split between the two duplicated copies, either in location or 12 effect. Since mutations in only one of two functionally redundant orthologs might not display a 13 phenotype, one may hypothesize that purifying selection would be relaxed. We asked to what extent 14 potentially deleterious mutations occur on duplicated genes. Our results confirm previous reports that 15 duplicated genes have lower mutation rates, however, further analyses of the nonsynonymous 16 variants reveal unexpected differences potentially attributable to subfunctionalization. 17

¹⁸ Materials and Methods

Animals. We chose two strains of X. laevis: "J strain" (RRID:NXR 0.0024) (Gantress et al., 2003) 19 as provided by co-author Marko Horb from the National Xenopus Resource Center (NXR, 20 RRID:SCR 013731), and "B strain" as provided by co-author Leonid Peshkin from the Harvard 21 Medical School (Figure 1). The J strain was obtained from Jacques Robert (University of Rochester 22 Medical Center) specifically for genome sequencing due to its high level of inbreeding. It is therefore 23 expected to show significantly lower heterozygosity than wildtype. It is estimated to be inbred for 32 24 generations (Gantress et al., 2003; Tochinai and Katagiri, 1975). The J strain animals used in this 25 study were second generation (F34) offspring of parents from the same clutch as those used for the 26 sequencing characterization (J. Robert's personal communication). The B strain is a line of inbred 27 albino animals with estimated inbreeding of at least 10 generations. According to Olga Hoperskava 28 (Hoperskaya, 1975), albinos appeared in the Xenopus colony at the Institute of Developmental 29 Biology, Moscow, in 1972. These were indirectly imported to the Berkeley colony in the 1980's. At 30 Berkeley the strain had some edema and was occasionally outbred to pigmented frogs in the mid-31 1980s, and crossed to get back the albino without edema (John Gerhart, personal communications). 32 The frog facility at HMS was founded in 1993-1994 when Marc Kirschner moved there from UCSF 33 and brought a small group of albino frogs with him. To the best of our knowledge, no animals were 34 brought into the facility between 1993 and 2000 and the group was inbred every 2-3 years. Since 35 2000, no animals were brought into the HMS colony from an outside source, which leads us to 36 estimate that they have been inbred for approximately 10 generations since 1993, with moderate 37 inbreeding before that. 38

Hybrid crosses and sequencing. We successfully performed natural mating of the two Xenopus
 strains: two first-generation hybrid (F1) and two straight self (JxJ, BxB) crosses. We then collected
 tadpoles at a single developmental time-point (stage NF-42), pooled ten tadpoles per cross, and

4

isolated RNA from each pool. After RiboZero treatment, we constructed four Illumina libraries, and
 performed RNAseq on HiSeq 2000 platform, resulting in approximately 30 to 47 million reads per
 library with paired-end 100 base reads (see **Table S1** for details). The F1 libraries were pooled *in-silico* and analyzed together.

Data analysis. The X. laevis genome sequence data was downloaded from Xenbase 5 (RRID:SCR 003280), including the gene models and respective names. We used the most up to date 6 genome assembly (Session et al., 2016) from files named "XL9.1 annot v1.8.1.primary*" released on 7 Dec 9, 2015 on Xenbase (ftp.xenbase.org/pub/Genomics/JGI). RNA-Seg reads were soft-trimmed by 8 guality, and stripped of remaining Illumina adapter sequences using Trimmomatic (Bolger et al., 9 2014). We used paired end alignment which means that the mapping information from both the 10 forward and the reverse read was used simultaneously to determine the mapping location and п possibly disambiguate mapping in situation when one of the reads in a pair was a match to multiple 12 mapping loci. We aligned the paired reads and aligned to the JGI9.1 assembly using tophat ver. 2.1.0 13 (Trapnell et al., 2009), allowing up to five mismatches, read-gap length of 3, and edit-distance of 5 14 (command line parameters used: tophat -N 5 --read-gap-length 3 --read-edit-dist 5.) Edit-distance for 15 tophat is a parameter that controls simultaneously the permitted mismatches and the permitted 16 INDELS and refers to the minimal number of changes that need to be made to the mapped read in 17 order to obtain a sequence perfectly matched to the genome. The --N parameter controls only the 18 number of mismatches. So for example, with read-edit-dist of 5 we allow 3 mismatches and 2 19 deletions, but not 5 mismatches and 3 deletions). We used the samtools ver. 1.3 (Li et al., 2009) 20 mpileup tool to count the number of bases observed in each covered position. We then processed the 21 output with *bcftools* (Li et al., 2009) to obtain and characterize variant calls by depth (number of reads 22 covering the base) and quality (a phred-scaled score designed to reflect confidence in the 23 identification of the nucleobases by the sequencer). 24

For a conservative approach to SNP discovery in an allotetraploid genome we discarded 25 ambiguous reads, defined as reads with multiple acceptable alignments under the specified 26 parameters (see above). To do so, we used a mapping guality filter on the alignments used for SNP 27 calling; the mapping quality of ambiguously mapped reads produced by the aligner is indicated as 0, 28 while we required mapping quality of at least 30 (switch -q 30; specifying minimal alignment quality of 29 the read) to discard any ambiguous or low quality alignments (7% of the mapped reads, Table S1); 30 otherwise, mappings across duplicated genes would have resulted in many false SNPs resulting from 31 cross-mappings of reads from the two homeologs. The variants were further annotated as 32 synonymous or missense using SNPeff (Cingolani et al., 2012) software and further gualified as 33 benign or damaging using PolyPhen-2 web server (Adzhubei et al., 2010). SNPeff uses the gene 34 models and genetic code to label each SNP as non-coding or coding; coding SNPs were then labeled 35 synonymous or non-synonymous. SNPeff annotation thus could be easily reproduced from VCF files, 36 which are made available as part of this publication via NCBI GEO entry GSE74470. PolyPhen is a 37 method and a server which assigns a score between 0 and 1 to a missense SNP, reflecting the 38 likelihood that a given variant will affect the protein's function. The score is further categorized as 39 "benign", "uncertain", "possibly damaging" and "probably damaging". Values of dN/dS were obtained 40 by first calculating the ratio of nonsynonymous to synonymous mutations (D_n/D_s). The number of 4I

nonsynonymous and synonymous sites was calculated using the PAML software package (Yang,

² 2007) from the primary transcript files.

3 Results

4

Remaining genetic diversity in the colonies of the reference Xenopus laevis strain (J strain)

To gauge the RNA-encoding sequence diversity remaining within the J strain colony, we performed RNA-sequencing and compared cDNA sequences to the *X. laevis* reference genome, which is based on that strain. We prepared cDNA libraries from pooled stage NF-42 tadpoles (Nieuwkoop and Faber, 1994) of J strain, and aligned the sequence reads to genome assembly version 9.1, available on Xenbase. There were 347,850 high-confidence (QUAL 30, 97% probability of correct call according to *bcftools*) single-nucleotide variants in cDNA of J-strain animals compared to the reference J strain genome sequence.

Of these, transitions outnumbered transversions (215,529 ts, 132,321 tv) and constituted 62% of 12 the total. This rate is lower than would be expected in human (67%, p <0.000001) based on the 1000 13 Genomes Project data (DePristo et al., 2011). Since the ratio is stable across the quality range and 14 the per-base sequence quality is high, we interpret the difference to be due to the relatively higher GC 15 content of the Xenopus genome, which has been shown to influence this measure (Wang et al., 16 2015a). There were 38,354 INDELs. Many more possible variants were detected at lower confidence 17 thresholds (Figure 2), but researchers with specific interest in any such candidate loci should validate 18 the target loci. 19

Of the SNPs covered by 10 or more reads, which afford a >99% chance of detecting both parental 20 variants, 74% were heterozygous, indicating that the diversity within the J strain colony remains 21 significant, constituting approximately 0.05% of all bases covered at that level (27,688 of 61,667,356 22 bases). However, at this depth threshold, the fraction of heterozygous SNPs is higher than expected 23 (Wang et al., 2015b) from the Hardy-Weinberg equilibrium (0.67%), suggesting that we are 24 overestimating heterozygous SNPs, possibly due to alignment errors and/or deviations from diploidy. 25 Indeed, higher depth thresholds provide a better estimate of true heterozygosity (Figure S1). As for 26 the homozygous variants, these derive from three possible sources: 1) sequencing and assembly 27 errors; 2) wildtype variants that were not expunded by inbreeding and may be homozygous in the 28 particular cross; 3) true homozygous variants (presumably mostly derived from wildtype) that 29 appeared post-genome sequencing specifically in the MBL colony. Since the MBL J strain colony was 30 started from a single pair, there is some possibility that a fraction of the homozygous SNPs may be 31 truly homozygous in that colony. Overall, the fraction of homozygous SNPs was observed to be 32 higher at highly covered positions (32% of all SNPs and 0.02% of the genome, 33 1,129/3,564/6,114,919). Based on these positions, our estimate of the rate of homozygous SNPs is 34

0.02%, and the fraction of heterozygous SNPs among all SNPs is 69%, which is comparable to an
 occasionally outbred human population [cf. Figure 1 of (Wang et al., 2015b)].

Thus, our findings improve our understanding of the genetic landscape of *Xenopus laevis* by adding SNP information that will be useful for planning of future experiments that require precise sequence alignment, such as CRISPR-Cas genome editing applications. The comparable levels of heterozygosity of J strain and human populations also suggest *Xenopus* can be used to model some
 aspects of variation in human populations.

3 A catalogue of SNPs in the B strain

Next, we wanted to characterize SNPs in the albino strain, which we call the "B strain". Albino 4 animals are very useful for imaging studies in Xenopus, and can be used to create different albino 5 transgenic and mutant lines by breeding of albino and pigmented animals. For work in such animals, 6 accurate information about variants harbored in the albino colony should assist in primer and 7 morpholino design as well as genome editing. Additionally, known polymorphisms could be used to 8 pursue allele-specific characterization. For example, the temporal and spatial distribution of 9 maternally deposited mRNA can be studied in a F1 hybrid cross. The SNPs we report are a useful 10 resource for genomic research with that strain. Π

As expected for a divergent line, the amount of overall variation observed in the B strain is 12 significantly higher than the J strain (708,820 SNPs of QUAL 30, ts: 403,886, tv: 304,934, indel: 13 62,748). In fact, the number of SNPs is more than twice than that observed in J strain, and this 14 remains the case when we control for depth of coverage (Figure S1). Furthermore, the vast majority 15 of identified SNPs are heterozygous, which was expected because the strain has not been strictly 16 inbred and has been subject to periodic outbreeding. Interestingly, the ts/tv ratio for the B strain is 17 even lower than the ratio observed for J strain (1.3 versus 1.6, p<0.0001, Figure 2). Since the 18 samples were sequenced on the same lane, the lower ratio cannot be due to variation in sequencing 19 quality but may indicate higher mismapping rates. Thus, as expected, the non-genomic inbred strain 20 presents a deeper reservoir of genetic diversity that can be exploited in genetic studies. 21

22

23

Characterization of differences between J strain and occasionally outbred B strain

Using the SNPs identified in the RNA-Seq experiments, we estimated the expected sequence diversity between the J strain and an occasionally outbred line, the B strain. Specifically, within the cDNA of protein-coding genes, we find 626,321 SNPs in the B strain that are not observed in J strain over a total of ~57.8*10^6 nucleotides covered, or 1.1% difference. SNPs common to B and J strains constitute only a modest fraction of B strain SNPs (<29%), but the majority (>70%) of J-line SNPs. A SNP shared between J-line and B-line is very likely a wild-type variant persisting in the J-line colony. A SNP unique to J-line may indicate either a false positive in our data or a reference inaccuracy.

32 Characterization of diversity in a first generation hybrid

The genomic diversity data from an F1-hybrid cross of the J and B strains is a further resource. 33 The number of SNPs and INDELs observed in the JxB F1 generation is more similar to that observed 34 in J strain than in the B strain, particularly at higher guality thresholds. This is due to a combination of 35 factors, specifically a qualitative and quantitative decrease in the representation of alternative variants 36 in the F1 compared to the pure B strain, and a mapping bias favoring the alignment of reference 37 reads. However, when taking into account only the coverage depth (and not the proportion of the 38 alternative allele observed), the amount of observed F1 variation increased substantially (Figure 2). 39 This indicates that F1 data can be used to validate and refine variant calls from the pure strains. 40

^I Further, it is possible to use the data to discover expression quantitative trait loci (eQTLs) by

² analyzing the relative expression of the two alleles at heterozygous variant calls.

3 Validation and technical noise estimation

Our approach to SNP calling has a number of inherent limitations due to the fact that it uses RNA 4 rather than DNA. To understand the potential for inaccuracies inherent in the method, we used the 5 data from an additional experiment in which one tadpole was cut into two parts, and the resulting 6 samples underwent all steps of the protocol from RNA extraction to sequencing separately. We then 7 assessed the validation rate of all SNPs covered with at least 10 reads in both samples. This minimal 8 coverage restriction was necessary in order for us to reduce the influence of unrelated factors such 9 as differences in gene expression level on the chance of confirmation When a variant was called in 10 both replicates, >99.7% of genotype calls were identical showing that the bases were accurately II called; When a variant was called in one sample, it was also called in the other 70% of the time. 12 When we restricted the analysis to SNPS with quality 30 or higher (which was used for cutoff for 13 statistics cited in the paper) in the sample where they were detected, the agreement jumped to 82%. 14 The guality call itself corresponds to 97% chance of correct call, which means the discrepancy 15 between the expected and actual confirmation rate is 15 %. 16

It is important to note however that the unconfirmed calls are not necessarily equivalent to a false
 positive rate. A SNP may remain undetected in one of the samples even at a minimal coverage of 10
 reads due to a number of factors, including amplification bias, base quality differences, and tissue specific differences in regulatory regions (eQTLs) which may introduce different allelic bias at
 heterozygous loci in different parts of the sample.

22

23 Missense mutations

Having acquired the SNP data, we asked how many of these SNPs cause a change in the protein 24 sequence they encode, and what is the nature of these changes, i.e. are they neutral, or function-25 altering (a.k.a. damaging). For this analysis, we used SNPs covered at depth >30. At the protein 26 level, of about 20M amino acid residues covered, we detect 29,008 missense changes, or 27 approximately 0.15% difference. Assuming the average tryptic peptide length of 13 amino acids, we 28 can estimate ~2% probability of missing a peptide in proteomic mass-spec spectra-to-peptide match 29 because of a substitution. The degree of sequence difference between J strain and wild type 30 Xenopus is especially relevant in proteomic experiments, since a single amino acid substitution will 31 result in a peptide not being identified in a peptide-spectra match. Provided an estimate that 15-50% 32 of all proteins are identified and quantified based on a single peptide, the SNP distinction will lead to a 33 substantially reduced number of characterized proteins and reduced accuracy for proteins registered 34 with more than a single peptide. An average peptide length for proteins detected in our previous 35 Xenopus experiment is 13 amino acids (Peshkin et al., 2015; Wühr et al., 2014). We analyzed 36 nsSNPs using our previously published server for predicting damaging missense mutations 37 (Adzhubei et al., 2010). A total of 29,008 nsSNPs in 11,603 proteins were identified. These proteins 38 correspond to 9,012 uniquely named genes, where we use gene symbols assigned by our published 39 pipeline (Wühr et al., 2014). Homeologous genes located on the longer and shorter paired 40

chromosomes (Matsuda et al., 2015; Session et al., 2016) are respectively labeled with suffixes ".L"
 and ".S".

There is no bias between "L" and "S" chromosomes (respectively 10,858 vs 9,059 SNPs in 5,774 vs 5,566 genes), and 3,353 genes have nsSNPs in both "L" and "S" homeologs. The functional effect annotation is mainly based on a positional amino acid conservation score.

6

PolyPhen-2 category	Number of variants	% X. laevis	% H. sapiens (WHESS)
Benign	19307	66	40
possibly damaging	3124	11	20
probably damaging	1679	6	40
Unknown	4898	17	0

7

Table 1: The classification of variants in *X. laevis* coding sequence by PolyPhen-2 category as based on "HumVar" model, and their relative share as compared to *WHESS* (*H. sapiens*) dataset.

ю

We next set out to determine how this compares to what is observed in humans. It is estimated II that a typical individual differs from the reference genome sequence at approximately 10,000-12,000 12 synonymous and 10,000 non-synonymous sites (1000 Genomes Project Consortium et al., 2012), 13 with 250 to 300 loss-of-function variants. All nsSNPs are categorized into "benign", "unknown", 14 "possibly damaging" and "probably damaging" categories based on the PoyPhen-2 model (Table 1). 15 The percentage of damaging mutations we observe is naturally much lower than in the whole human 16 exome sequence space (Adzhubei et al., 2010) (WHESS). This is expected since our data represents 17 only a tiny sample from the population, thus capturing primarily the most frequent putatively neutral or 18 mildly damaging variants. However, we observe that there is a significant number of function-altering 19 mutations in X. laevis potentially making it a useful model organism for developmental genetics. 20

21

22

Genome duplication and subfunctionalization

Xenopus laevis underwent speciation (~34 million years ago), followed by allotetraploidization 23 approximately 18 million years ago. Subsequently, an estimated 40% of duplicate gene copies were 24 lost (Session et al., 2016). One common guestion for mutation analysis is whether the genes with 25 retained duplicates evolve at a different rate than singleton genes. It has been observed across 26 species that genes that retain their duplicated copy after whole genome duplication are functionally 27 more important and therefore subject to strong selection (Jordan et al., 2004). If functional importance 28 did not play a role in duplicate copy loss, one may hypothesize that genes with duplicates are more 29 robust to mutation due to the presence of an extra copy. To assess the strength of purifying selection 30 in the two groups of genes, we used SNPs unique to the B strain which we took to have appeared at 31 a time later than genome duplication. We compared genes with existing duplicates (paired) with 32 apparent single allele genes (singletons) in two measures – the ratio of missense (non-synonymous) 33 variants to synonymous variants (D_n/D_s) and the ratio of damaging variants to missense variants. 34 Consistent with other species, we find the results suggest that paired genes appear to evolve at a 35 slower average rate -- a mean D_p/D_s value of 0.87(paired) vs 1.01(singletons), when computed over 36 genes with at least one synonymous variant ($n_{paired} = 4484$, mean_{paired} = 0.87, std_{paired} = 0.89, $n_{singleton} =$ 37

¹ 4014, mean_{singleton} = 1.01, std_{singleton} = 1.04, upaired t-test p < 10e-05; χ^2 test p < 10e-05; Kolmogorov-² Smirnov test for difference in respective distributions, p = 1.5e-09, see **Fig. 3**).

One concern is that genes without synonymous substitutions may be disproportionately distributed 3 among paired and singleton genes, to control for this possibility, we calculated D_n/D_s for each set of 4 sequences as two virtual supergenes (paired and singleton). The results of this calculation uphold the 5 previously observed difference, although taking into consideration sequences of genes without 6 synonymous substitutions brings the overall ratio down, as expected (mean_{paired} = 0.68, Cl_{low} = 0.66, 7 $CI_{high} = 0.70$; mean_{singleton} = 0.84, $CI_{low} = 0.81$, $CI_{high} = 0.86$, see **Table 2**). The dN/dS ratio (Yang and 8 Bielawski, 2000), which is the D_n/D_s normalized by the number of potential synonymous and non-9 synonymous sites, can be interpreted as an indicator for selection pressure. It is lower than 1, 10 suggesting that both groups of genes remain largely under purifying selection. Thus, we can conclude \mathbf{II}

that duplicated genes are under higher purifying selection than singletons.

13

Туре	Genes	Missense (benign + damaging)	Synon. mutations	D _n / D _s	Synon sites	Nonsyn sites	dN/dS	Damaging/ Missense	Damaging/ Synonymous
singleton	27,779	14,990	17,936	0.84	6,586,292	24,025,756	0.229	0.151	0.126
paired	17,320	14,018	20,719	0.68	6,501,803	23,642,778	0.186	0.181	0.123

14

Table 2: Variant types in singletons versus paired genes in *Xenopus laevis*. Only variants unique to the B
 strain are considered and annotated by PolyPhen-2. For this comparison, "paired" and "singleton" genes are
 considered as a unified supergene, which allows us to take into consideration genes without synonymous
 substitutions.

19

An additional question is whether some paired genes underwent subfunctionalization after the split. 20 The process of subfunctionalization would be characterized by a larger than expected fraction of 21 function-altering mutations. We therefore asked if there is a difference between the two gene groups 22 in the fraction of function-altering (damaging) mutations observed in missense mutations. We found 23 that damaging mutations constitute a higher fraction of the missense mutations in these genes as 24 compared to singletons (0.151 vs 0.181, p < 10e-05, Chi-square test). Remarkably, the ratio of 25 damaging to synonymous variants is close, therefore the elevated fraction of damaging among 26 missense offsets the reduced fraction of missense among all. 27

One caveat is that this analysis is performed on a draft version of the *X. laevis* genome, it is therefore unlikely that all duplicated genes have been positively identified. Thus, the two juxtaposed categories – paired and singletons, are best thought of as a paired subset and a singleton-enriched subset. Even so, our results are relative and based on the comparison of the two classes, and therefore do not rely on perfect separation between the classes and can absorb categorization errors. We should thus expect the results to get more significant once the "singleton-enriched" category becomes better defined with the future releases of the genome assembly and gene models.

35

36 How sequence differences affect protein mass spectrometry resolution

To provide an additional and orthologous estimate of the divergence of the J and B strains, we I analyzed the spectra from our previous proteomic mass spectrometry experiments using the most 2 recent Xenopus laevis genome sequence as a reference dataset. Using the same search parameters 3 as previously reported (Peshkin et al., 2015) but the gene models from the v9.1 genome, 4 approximately 144K spectra were matched to approximately 45K unique peptides --- an overall 5 improvement of 5% compared to using an older X. laevis genome JGI6.1 genome reference in our 6 original publication. After creating an alternative reference corresponding to B strain variants of 7 proteins, we found that 1.4% of peptides are missing or about 1 in 75 peptides. At the protein level 8 this corresponds to detecting a total of 8,456 instead of 8,499 proteins or 0.5% of the proteins (of 9 which 2,062 were single-peptide detections with 11 proteins only lost from these). 10

We noted that for a heterozygous nsSNP proteomic mass spectrometry measurement would show Π only fractional level of protein expression. This fraction is in turn unknown since there are genes with 12 genetic allelic bias or possibly epigenetically-driven mono-allelic expression (Nag et al., 2013). 13 However, we estimate that none of the aforementioned loss of resolution seems significant at the 14 level of nsSNP. Finally, our numbers are clearly an underestimate since there are variants that we did 15 not detect within the proteins we measured in that particular experiment; in addition, proteins present 16 in early embryonic stages are likely to be under more stringent purifying selection compared to later 17 stages. 18

¹⁹ Discussion

In summary, we have presented a resource for coding variation in Xenopus laevis based on the 20 newly released genome sequence. One caveat is that we study polymorphism indirectly, using 21 transcripts, which means that both noise and systematic bias could affect our observations. While we 22 have provided an upper bound of the estimate of technical noise with an experiment involving 23 technical replicate, there are biological sources of noise we cannot fully address. For example, 24 deamination could systematically produce A/G substitutions in substantial fraction of the transcripts -25 a phenomenon known as "RNA editing". A recent study found that as much as 60% of the mRNA in 26 squid brain is edited (Alon et al., 2015). Furthermore, expression biases of genetic or epigenetic 27 nature can affect our ability to detect coding polymorphisms. 28

In addition, it is possible that some of the newly described variants may have resulted from
 mRNAs transcribed from the currently missing sections of the genome sequence, which bears
 resemblance to the existing sequence. Note that cases like this describe actual variants present in
 mRNA although not necessarily in DNA.

With these caveats, we have shown that there remains residual coding variation in the inbred *Xenopus laevis* J-strain line, likely reflecting in part the differences between existing J-line colonies and the colony used for the genome project.

³⁶Unsurprisingly, the genetic diversity in an occasionally outbred strain is much larger that that of the ³⁷inbred strain. The greater diversity of occasionally outbred strains, such as the B strain constitutes a ³⁸technical challenge and may need to be taken into account in bioinformatics analysis, e.g. when ³⁹mapping parameters are set. Specifically, the number of allowed mismatches may be tuned to reflect ⁴⁰the expected number of variants in the read given the read length and should be increased if an occasionally outbred strain (such as the B strain) is used. However, note that increasing the rate of
 allowed mismatches may present greater difficulty in distinguishing homeolog expression, and the
 overall mapping rate may be affected since more ambiguous mappings across homeologs are likely
 to result. This trade-off should be considered in the context of the specific sequencing application.
 Further, using a SNP-masked reference should be considered when tadpoles from two different
 strains (e.g. J and B strains) are used in the same experiment. In addition, homozygous variants in J
 strain can be utilized to improve the quality of the genome sequence.

Of particular interest in this regard are functionally relevant, and more broadly amino-acid changing 8 mutations. The latter have a detrimental effect on efforts to measure the protein abundance. When 9 the use of an inbred strain cannot mitigate the problem, a correction of the reference sequence 10 should be considered based on the known genetic profile of the sample. Another promising direction II is functional characterization of non-synonymous variants using models and computational methods 12 with a purpose of identifying variants which are high-confidence mutagenic according to the model, 13 yet clearly present and harbored in the population. Resolving such discordance would lead to 14 improvement of computational functional prediction algorithms, and potentially discovery of 15 compensatory epistasis. Epistatic interactions could be further studied by gene-editing and 16 mutagenesis approaches starting from two distinct strains with characterized differences. 17

While the timescales over which natural selection shapes the genome of the species are orders of 18 magnitude longer than the timescale of strain generation, we have also shown that strain variation 19 can be used to make claims about evolutionary processes on longer timescales, because samples 20 from that strain reflect the genetic diversity within the species. Analysis of variants exclusive to the 21 occasionally outbred strain allowed us to address the question of subfunctionalization in gene 22 duplications. The results of the comparison reveal an interesting paradox. While paired genes appear 23 to evolve at a slower rate, function-altering (damaging) mutations constitute a higher fraction of the 24 missense mutations in these genes as compared to singletons. Indeed, the first observation is 25 described as an apparently universal phenomenon affecting gene duplication throughout the animal 26 kingdom (Jordan et al., 2004), and is attributed to the fact that gene duplications generally affect 27 genes with higher functional significance. Paired genes are therefore subjected to higher levels of 28 purifying selection weeding out non-beneficial mutations. On this background, the higher prevalence 29 of function-altering mutations in paired genes among non-synonymous mutations might be cautiously 30 interpreted as evidence for subfunctionalization: variants leading to different function are retained at 31 higher rates in paired genes due to the duplicate alleviating the pressure against acquiring new use. 32 This may be in agreement with a dynamic model of gene duplication, in which the novel copy of a 33 duplicated gene is initially subjected to rapid evolution, followed by a return to purifying selection 34 (Pegueroles et al., 2013). Further analysis on a gene-by-gene basis may shed more light on the 35 viability of this interpretation. 36

In conclusion, this study shows that genetic analysis of *Xenopus laevis* enabled by the publication
 of its genome can lead to solutions of current technical challenges and to new insights into the
 functional significance of variation. The long life span of *Xenopus* (over 10 years) and the ease of
 large-scale developmental screens in this organism provide a valuable tool for assessing the
 functional relevance of specific gene variants. The list of variants uncovered in this study is an
 important step towards building up valuable resources for the community.

¹ Supplementary Materials

The raw sequence reads data and the variant call files were deposited to GEO under accession
 number **GSE74470**.

4 Acknowledgements

L.P. was supported by the NIH grant R01HD073104, also L.P., A.N. and V.S. were supported by
 R21HD81675, M.H. and E.P. by P40 OD010997. We thank MBL/NXR for their support of this project.

7 Figures

Figure 1: Three groups are considered independently for discovery and validation of genomic
 variants in *X. laevis:* a straight J, a straight B and an F1 cross.

10

Figure 2: Assessment of diversity in *Xenopus laevis* by RNA-seq of clutches of inbred (J), and

occasionally outbred (B) lines, and F1 crosses. **A-B**. Number of SNPs (A) and INDELs (B) as a

¹³ function of *bcftools* call quality. Call quality corresponds to -10log₁₀ probability that call is wrong). **C**.

Ratio of transitions to transversions as a function of call quality (see A-B). **D**. Number of calls as a

15 function of coverage depth.

16

Figure 3: A comparison between D_n/D_s distribution for paired and singleton genes, illustrating a shift between two groups of genes. X-axis: log2 D_n/D_s

19

References

2	1000 Genomes Project Consortium, Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M.,
3	Handsaker, R.E., Kang, H.M., Marth, G.T., McVean, G.A., 2012. An integrated map of genetic variation from
4	1,092 human genomes. Nature 491, 56–65. doi:10.1038/nature11632
5	Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., Sunyaev, S.R.,
6	2010. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249.
7	doi:10.1038/nmeth0410-248
8	Alon, S., Garrett, S.C., Levanon, E.Y., Olson, S., Graveley, B.R., Rosenthal, J.J.C., Eisenberg, E., 2015. The majority of
9	transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. eLife 4.
ΙΟ	doi:10.7554/eLife.05198
II	Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden, D.M., 2012. A
12	program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the
13	genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92. doi:10.4161/fly.19695
14	Cui, X., Affourtit, J., Shockley, K.R., Woo, Y., Churchill, G.A., 2006. Inheritance Patterns of Transcript Levels in F1
15	Hybrid Mice. Genetics 174, 627–637. doi:10.1534/genetics.106.060251
16	Davis, E.E., Frangakis, S., Katsanis, N., 2014. Interpreting human genetic variation with in vivo zebrafish assays.
17	Biochim. Biophys. Acta 1842, 1960–1970. doi:10.1016/j.bbadis.2014.05.024
18	del Viso, F., Bhattacharya, D., Kong, Y., Gilchrist, M.J., Khokha, M.K., 2012. Exon capture and bulk segregant analysis:
19	rapid discovery of causative mutations using high-throughput sequencing. BMC Genomics 13, 649.
20	doi:10.1186/1471-2164-13-649
21	DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G.,
22	Rivas, M.A., Hanna, M., McKenna, A., Fennell, T.J., Kernytsky, A.M., Sivachenko, A.Y., Cibulskis, K.,
23	Gabriel, S.B., Altshuler, D., Daly, M.J., 2011. A framework for variation discovery and genotyping using next-
24	generation DNA sequencing data. Nat. Genet. 43, 491–498. doi:10.1038/ng.806
25	Gantress, J., Maniero, G.D., Cohen, N., Robert, J., 2003. Development and characterization of a model system to study
26	amphibian immune responses to iridoviruses. Virology 311, 254–262.
27	Gurdon, J.B., 2013. The egg and the nucleus: a battle for supremacy. Dev. Camb. Engl. 140, 2449–2456.
28	doi:10.1242/dev.097170
29	Hellsten, U., Khokha, M.K., Grammer, T.C., Harland, R.M., Richardson, P., Rokhsar, D.S., 2007. Accelerated gene
30	evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. BMC Biol. 5, 31.
31	doi:10.1186/1741-7007-5-31
32	Hoperskaya, O.A., 1975. The development of animals homozygous for a mutation causing periodic albinism (ap) in
33	Xenopus laevis. J. Embryol. Exp. Morphol. 34, 253–264.
34	Hunt, T., 2002. Nobel Lecture. Protein synthesis, proteolysis, and cell cycle transitions. Biosci. Rep. 22, 465–486.
35	Izutsu, Y., Maéno, M., 2005. Analyses of immune responses to ontogeny-specific antigens using an inbred strain of
36	Xenopus laevis (J strain). Methods Mol. Med. 105, 149–158.
37	Jordan, I.K., Wolf, Y.I., Koonin, E.V., 2004. Duplicated genes evolve slower than singletons despite the initial rate
38	increase. BMC Evol. Biol. 4, 22. doi:10.1186/1471-2148-4-22
39	Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 1000
40	Genome Project Data Processing Subgroup, 2009. The Sequence Alignment/Map format and SAMtools.
4I	Bioinforma. Oxf. Engl. 25, 2078–2079. doi:10.1093/bioinformatics/btp352

I	Matsuda, Y., Uno, Y., Kondo, M., Gilchrist, M.J., Zorn, A.M., Rokhsar, D.S., Schmid, M., Taira, M., 2015. A New
2	Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus
3	tropicalis. Cytogenet. Genome Res. 145, 187–191. doi:10.1159/000381292
4	Nag, A., Savova, V., Fung, HL., Miron, A., Yuan, GC., Zhang, K., Gimelbrant, A.A., 2013. Chromatin signature of
5	widespread monoallelic expression. eLife 2, e01256. doi:10.7554/eLife.01256
6	Nieuwkoop, P.D., Faber, J., 1994. Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of
7	the development from the fertilized egg till the end of metamorphosis. Garland Pub, New York.
8	Pearl, E.J., Jarikji, Z., Horb, M.E., 2011. Functional analysis of Rfx6 and mutant variants associated with neonatal
9	diabetes. Dev. Biol. 351, 135–145. doi:10.1016/j.ydbi0.2010.12.043
10	Pegueroles, C., Laurie, S., Albà, M.M., 2013. Accelerated evolution after gene duplication: a time-dependent process
II	affecting just one copy. Mol. Biol. Evol. 30, 1830–1842. doi:10.1093/molbev/msto83
12	Peshkin, L., Wühr, M., Pearl, E., Haas, W., Freeman, R.M., Gerhart, J.C., Klein, A.M., Horb, M., Gygi, S.P.,
13	Kirschner, M.W., 2015. On the Relationship of Protein and mRNA Dynamics in Vertebrate Embryonic
14	Development. Dev. Cell 35, 383–394. doi:10.1016/j.devcel.2015.10.010
15	Session, A.M., Uno, Y., Chapman, J.A., Toyoda, A., Takahashi, S., Fukui, A., Hikosaka, A., Suzuki, A., Kondo, M.,
16	van Heeringen, S.J., Quigley, I., Heinz, S., Ogino, H., Ochi, H., Hellsten, U., Lyons, J.B., Simakov, O.,
17	Putnam, N., Stites, J., Kuroki, Y., Tanaka, T., Michiue, T., Watanabe, M., Bogdanovic, O., Lister, R.,
18	Georgiou, G., Paranjpe, S.S., van Kruijsbergen, I., Shu, S., Carlson, J., Kinoshita, T., Ohta, Y., Mawaribuchi, S.,
19	Jenkins, J., Grimwood, J., Schmutz, J., Mitros, T., Mozaffari, S.V., Suzuki, Y., Haramoto, Y., Yamamoto, T.S.,
20	Takagi, C., Heald, R., Miller, K., Haudenschild, C., Kitzman, J., Nakayama, T., Izutsu, Y., Robert, J.,
21	Fortriede, J., Burns, K., Lotay, V., Karimi, K., Yasuoka, Y., Dichmann, D.S., Flajnik, M.F., Houston, D.W.,
22	Shendure, J., DuPasquier, L., Vize, P.D., Zorn, A.M., Ito, M., Marcotte, E.M., Wallingford, J.B., Ito, Y.,
23	Asashima, M., Ueno, N., Matsuda, Y., Veenstra, G.J.C., Fujiyama, A., Harland, R.M., Taira, M., Rokhsar,
24	D.S., 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343.
25	doi:10.1038/nature19840
26	Tochinai, S., Katagiri, C., 1975. COMPLETE ABROGATION OF IMMUNE RESPONSE TO SKIN
27	ALLOGRAFIS AND RABBIT ERYTHROCYTES IN THE EARLY THYMECTOMIZED XENOPUS.
28	Dev. Growth Differ. 17, 383–394. doi:10.1111/j.1440-169X.1975.00383.x
29	I rapnell, C., Pachter, L., Salzberg, S.L., 2009. I opHat: discovering splice junctions with KNA-Seq. Bioinforma. Oxf.
30	Engl. 25, 1105–1111. doi:10.1093/bioinformatics/btp120
31	wang, J., Kaskin, L., Samuels, D.C., Snyr, 1., Guo, 1., 2015a. Genome measures used for quality control are dependent
32	Wang L Samuels D.C. Shur V. Cuo V. acych Dopulation structure analysis on aco (individuals across a (anosetrice)
33	using bioinformatics approaches BMC Bioinformatics 16. Dia doi:10.186/1471.2005.16. Str. Dia
34	Wühr M Freeman R M Dresler M Horb M F Deshkin I Gwai S D Kirschner M W 2014 Deep proteomics
2) 26	of the Xenopus laevis erg using an mRNA-derived reference database. Curr. Biol. CB 24, 1467–1475
30 27	doi: 10 1016/i cub 2014 os 0.44
27 28	Yanai I. Peshkin I. Jorgensen P. Kirschner M.W. 2011 Mapping gene expression in two Xenopus species:
20	evolutionary constraints and developmental flexibility Dev Cell 20, 482–496 doi:10 1016/i devcel 2011 02 015
39 40	Yang, Bielawski, 2000. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 406–502
4I	Yang, Z., 2007, PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 24, 1586–1591.
42	doi:10.1093/molbev/msmo88
43	
• •	

¹ Supplementary Figures and Tables

Table S1: Alignment statistics for the RNA-Seq read obtained respectively from J strain, B strain and F1crosses.

4

		Aligned	Multiple		Concordant	
	Paired reads	Concordantly	Alignment	Discordant	alignment rate	Unique concordant alignments
B line	32044487	27468914	1798611	1018479	83%	77%
J line	36403413	32115006	2127964	1224116	85%	79%
F1 crosses	76787153	66608073	4505595	2056413	84%	78%

5

6

Figure S1: Number of heterozygous (blue) and homozygous (red) mutations in J strain as a function of call
quality (see Figure 2). Only SNPs covered with 10 or more reads were considered.

IO

Π

Glossary

B strain	occasionally outbred albino strain
J strain	genomic stain
F1	first-generation hybrid
Transitions	interchanges of two-ring purines (A <-> G), or of one-ring pyrimidines (C <-> T)
Transversions	exchange of one-ring and two-ring structures: purine for pyrimidine
ts/tv	transition/transversion ratio. Transitions are expected to occur twice as frequently as transversions. In protein coding regions, this ratio is typically higher, often a little above 3. The higher ratio occurs because, especially when they occur in the third base of a codon, transversions are much more likely to change the encoded amino acid.
D _n /D _s	the ratio of missense (non-synonymous) variants to synonymous variants
dN/dS	D_n/D_s normalized to the number of potential synonymous and non-synonymous sites

Highlights:

- A catalogue of coding variants in two strains of Xenopus laevis including genomic.
- A functional annotation of identified coding mutations is provided.
- The ratio of non-synonymous to synonymous mutations suggests subfunctionalization.