2,918 research outputs found
Airborne Fraunhofer Line Discriminator
Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials
Coatings from copolymers of tetraphenoxysilane and p,p(1)-biphenol
Resultant resin from copolymers is highly crosslinked and completely aromatic. Procedure develops polyaryoxysilane structure in situ after the substrate has first been coated with a prepolymer. Resins are useful as protective coatings for metals, ceramics, glass, and other materials that accommodate relatively high curing temperatures
A new method for producing optical mirrors
Pure silicon improves optical mirrors for use in telescopes and high resolution optical systems. Pure silicon is used in both mirror and substrate in environments where large thermal changes occur. It has applicability in astronomical devices
Process development and pilot-plant production of silane polymers of diols Annual summary report, 22 Apr. 1966 - 22 Apr. 1967
Preparation of cross-linkable linear high molecular weight polyaryloxysilane
Theoretical efficiency of the Princeton two-element echelle spectrograph
Echelle spectrometer for use with spaceborne stellar telescope in Advanced Princeton Satellite Stud
Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes.
Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids
A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle
In this paper we describe an approach to Casimir Force problems that is
ultimately generalizable to all fields, boundary conditions, and cavity
geometries. This approach utilizes locally defined reflection amplitudes to
express the energy per unit area of any Casimir interaction. To demonstrate
this approach we solve a number of Casimir Force problems including the case of
uniaxial boundary conditions in a parallel-plate cavity.Comment: 9 pages, 5 figures, Equation 18 has been corrected, [v1] contained a
typ
- …
