

GPO PRICE
 \$
 \qquad

CFSTI PRICE(S) \$ \qquad

Hard copy $(\mathrm{HC}) \quad 300$
Microfiche (MF) \qquad
ff 653 July 65

 OPTICAL GROUP NORWALK, CONNECTICUT

ENGINEERING REPORT NO. 9148
FRAUNHOFER LINE DISCRIMINATOR
FINAL REPORT
.DATE: APRIL 15, 1968

PREPARED FOR: NASA MANNED SPACECRAFT CENTER
GENERAL RESEARCH PROCUREMENT BRANCH
HOUSTON, TEXAS 77055°
N.M. HATCHER/TE2, TECHNICAL MONITOR

Contract: NAS 9-7447

Werner Loaning, Manager, Inśtymentation Department Advanced Systems

Contributors:

H. Ludwig
D. Markle
G. Schlesinger

Table of Contents

Section Title Page
1.0 SUMMARY AND INTRODUCTION 1
2.0 PURPOSE AND FUNCTION OF THE SYSTEM 2
3.0 DESIGN DESCRIPTION 6
3.1 Opto-Mechanical Design 6
3.2 Circuit Description 34
3.3 Circuit Description - Instrument - Reference 38
625-2021
3.4 Circuit Description Electronics Console - 40 Reference Diagram 625-2023
4.0 PROGRAM HISTORY 43
5.0 COMPONENT TEST 45
5.1 Instrument Box Pressure Test 45
5.2 PMT Vibration'Test 45.
5.3 Amplifier Bandpass 45
5.4 Temperature Controllers 45
5.5 Motor Speed 47
5.6 Computer Elements 47
6.0 ELECTRONICS CONSOLE INITIAL ADJUSTMENT PROCEDURE 48
7.0 SYSTEM ACCEPTANCE TESTS 55
7.1 Acceptance Tests Procedure for Fraunhofer 55
Line Discriminator
7.2 System Acceptance Test 59
8.0 AIRBORNE FRAUNHOFER LINE DISCRIMINATOR STORAGE 69
PROCEDURE FOR END ITEM
8.1 General 69
9.0 SUN TARGETS AND SCALING OF THE SYSTEM 70
9.1 Sun Targets 70
9.2 p Factor Scaling 71
10.0 OPERATION AND MAINTENANCE 72
10.1 Installation Into the Aircraft 72
10.2 Power Requirements 73
10.3 Operation of the Instrument 73

- II. 0 RECOMAENDATIONS 76

LIST OF ILLUSTRATIONS

Figure Title Page
A Filter Transmission \& Sun Spectrum - 3
1 AFLD Instrument Without Housing. $\therefore 9$
AFLD Instrument in Housing, Cover Removed 11
AFLD Electronics In Instrument Housing 13
AFLD Electronic Console, Front View 15
AFLD Electronic Console Rear View; Cover Removed 17
AFLD Electronics in Console, Side View 19
AFLD Electronics in Console, Plan View 21
Electronics in Console. Top, Plates Turned Over 23
Electronics in Console, Top of Second Plates Turned Over 25
AFLD Instrument in Test Fixture 27
11 AFID Inner View of Test Fixture. 29
12 AFLD Sun Target 31
13 Amplifier Bandpass Curve 46
Drawings
625-2000 7
625-2021 35
625-2025 37

1.0 SUMMARY AND INTRODUCTION

This final report serves several purposes:

1. It contains a short description of the function and purpose of the overall system and gives information about other.possible applications of the same basic principle as realized in the Airborne Fraunhofer . Line Discriminator.
2. A short design description is added for completeness; however, it is not as elaborate as the description given in the Design Review Report, Perkin-Elmer Engineering Report No. 8916.
3. The program history is shown in comparison with the contract schedule.
4. Some chapters are devoted to componentwas-well as system tests; information on calibration and storage are provided.
5. Operation and maintenance is described in detail to provide a guide for the training of operators and for trouble shooting \cdot in the field.
6. A paragraph of recommendations is added to summarize ideas which might be helpful in designing a second generation systém.

It can be said that during the design and fabrication no difficulties were found which required elaborate redesign of the optical, mechanical, or electronics of the system. The system was accepted in seven..and one half months after receipt of contract.
2.0 PURPOSE AND FUNCTION OF THE SYSTEM

The FLD instrument employs a new optical. sensing technique which. appears to have a large number of applications. The basic principle appears to have been exploited first by several astronomers who used a spectrometer to examine the Fraunhofer line profiles of light reflected from various parts of the lunar surface. The presence of fluorescence material superimposes a broad, relatively flat spectrum on the sharply notched solar spectrum thereby reducing the intensity ratio between the continuum and the center of the Fraunhofer Lines.

Reducing this principle to a practical airborne measurement sys* tem capable of coping with the wide spectral differences of natural terrain as well as the vibration environment of the aircraft, required several novel developments. The most important of these was a narrow band filter located on the center of the 0:7 Angstrom wide Fraunhofer sodium D line at 5890 Angstroms. A bandwidth of $0.7 \AA$ is about a factor of 10 narrower than the narrowest multilayer dielectric filter. Normally it could be attained with a spectrometer only at the cost of greatly reduced signal-to-noise due to the very small area of the entrance and exit slits. In the present instrument the required spectral resolution was achieved with a glass-spaced Fabry-Perot filter, which is very difficult to manufacture, but which is immune to any temporal or vibration induced spectral changes. A variable temperature housing around each of the Fabry-Perot filters allows it to be tuned over a small spectral range. Figure A shows the filter transmission in reference to the Sunspectrum at the vicinity of the Sodium Iines.

A second novel feature is a compact optical design which provides for continuous sampling of the solar spectrum without a tracker or any

Figure An* Filter Transmission \& Sun Spectrum
limitations on the aircraft direction. The design also eliminates any effect of photomultiplier or preamplifier gain changes on the output signal. Vibration induced photomultiplier noise has been avoided by the use of a very rugged $E M R$ venetian-blind dynode phototube constructed to operate in a missile launch environment:

The data processing problem which faced the first users of the Fraunhofer Line Technique has been greatly reduced by a real time analogue computex which indicates a normalized fluorescence value directly. A normal ized value is desirable since it is characteristic of the target only and does not depend upon solar zenith angle or atmospheric conditions. Multipli cation and division are performed by analogue log and exponential units in a temperature controlled environment to minimize temperature offinet errors. Temporal changes in these components as well as small functional exrors due co deviations in the exponential $:$ behavior of the active circuit components can be : rather well compensated by an adjustable correction network built into the computer.

As originally conceived by the U.S. Geological Survey the instru~ ment will be used to measure concentrations of rhodamine B in aqueous solution from a low flying Twin Beech aircraft. If successful, this approach will result in a considerable saving of time over the usual approach which involves taking and labeling a great many samples from a number of locations so that the dye tracer concentrations can be measured in the laboratory with a spectro-- photofluorimeter. USGS has also suggested the possible application of a similar instrument as a prospecting tool for phosphate and other fluorescent minerals. For this application it would probably be desirable to employ a

Fraunhofer Line nearer to the blue end of the spectrum such as the CaIl line at 3968.5A which is 10A wide. Other applications may include pollution detection by observation of the fluorescence of detergents and oil slicks. fors finding by observation of the oil slick associated with large schools of fish and plant studies based on the natural fluorescence of chioronhv11.

Abstract

3.0 DESIGN DESGRIPTION

This paragraph contains a description of the design of the instrument and an explanation of the arrangement and installation in the aircraft of the Fraunhofer Line Discriminator. The following figures should be used as references:

3.1" OPTO-MECHANICAL DESIGN

Figures 1 through 12. and 625-2000

NOTE

The first digit of each part number is the figure number.

Figure 1 shows the instrument package mounted on the base plate which, in turn, is mounted via, shock mounts to the instrument housing 1001.

No. 102 is a $3 / 4$ inch thick aluminum plate which is used as a base for the instrument. Sunlight from the sun target enters the instrument through the telescope 101 which has a focal length of five inches and an aperture of one inch. A calibration light is located on this telescope to provide light input via the beamsplitter in housing 103 to the aperture stop of this telescope.

For an explanation of the use of the calibration light, see operation and maintenance number 10,0 . The sunlight reflected from the ground enters the instrument package through the other telescope number 118 . Just beyond* the field stop, chopper wheels, 104 and 106, are located. Both chopper wheels are driven from a single motor. The motors housing appears in Figure 1 , between the chopper wheels, 104 and 106.

101

Sun Target Telescope
Mounting Plate
Calibration Lamp Housing
Chopper Blade for Sunlight
First Beamsplitter Housing . Chopper Blade for Ground Reflected Light Chopped Inght'Reference Pickup

G Photomultiplier Housing
C Photomultiplier
C Eilter Block
Second Beansplitter Housing
Chopped Light Reference Pickup
D_{2} Filter Block
D_{2} Photomultiplier
D_{2} Photomultiplier Housing
Electronics on Rear of 102
Mounting Holes on 102
Ground Light Telescope

Figure 1 A. F, Li D fostrament Withon flousin:

Figure 2 - AFLD INSTRUMENT IN HOUSING, COVER REMÓVED

201 Mounting Plate 102 From Rear
202 Electronic Box Cover
203 Coupling Transformers
204 Synchronous Detectors
205 Connecting Plug
206 Mounting Screws for 102 to Shock Mounts
207 Preamplifier and Ref. Amplifiers
208 Motor Capacitor

209 Instrument Housing

The weight of the Instrument in Housing is 36 pounds.

[^0]Figure 3 - AFLD ELECTRONICS IN INSTRUMENT HOUSING

Connector 205
Synchronous Detector Socket Z2
Coupling Transformer T1
Connector Plug 205
Precision Resistors R26
Capacitor C10
Capacitor C13
Precision Resistor R21
Electronics Housing
Mounting Screws
High Voltage Power Supply
Socket A1
Motor Capacitor
High Voltage Pins

Figure 3. A. F. 1. D. Electronics in Instioment Housing, Electronics Box Turned Over

Figure 4 - AFLD ELECTRONIC CONSOLE, FRONT VIEW

401	Panel Mounting Screws
402	Phone Jack B/A Signal
403	Phone Jack p Signal
404	C Filter Block Temperature Indicator
405	Scope Scale Factor Switch
406	D_{2} Filter Block Temperature Indicator
407	Bandpass Selector (Scope)
408	D_{2} Filter Block Temperature Setting
409	A-B-C and D Signal Outputs
410	Fuses
411	Main Power Switch
412	Bandpass Selector B/A Indicator
413	Bandpass Selector ρ Indicator
414	B/A Indicator
415	ρ Indicator
416	Oscilloscope
417	Console Housing
418	Sensitivity Selector for Scope
419	Phone Jack for Use of 416 for Test
The	of the Electronic Console is 142

[^1]Figure 5 - AFLD ELECTRONIC CONSOLE REAR VIEW, COVER REMOVED

501	B/A Indicator
502	ρ Indicator
503	Oscilloscope Housing
504	Scope Connector
505	± 15 Volt DC Supply
506	Cover for Temperature Controlled Electronics
507	Fuses

Figure 5. A.F. L. D. Electronic Console Rear View, Cover Removed

Figure 6. AFLD ELECTRONICS IN CONSOLE, SIDE VIEW

601	Lower Amplifier Board 625-2043
602	Middle Amplifier Board 625-2042
603	Upper Amplifier Board 625-2042
604	Test Switches
605	Oscilloscope Housing
606	Z1 Log. Element
607	Z2 Exp. Element
608	Z3 Exp. Element
609	Z4 Log. Element
610	Z5 Exp. Element

Figure 6. A. F. L. D. Electronics in Console, Side View

Figure 7 - AFLD ELECTRONICS IN CONSOLE, PLAN VIEW

Temp. Indicator D_{2}
Temp. Indicator C
Phone Jack 403
Phone Jack 402
Phone Jack 419
Resistor R116
Test Network R125
Test Network R124
Test Network R117
28 VDC Supply
C Filter Heat Control
D_{2} Filter Heat Control
Over Voltage Protection
Log. Element
Adjustment Switches 604
Precision Resistor R6
Offset Adjustment R13
Trim Resistor R18
Trim Resistor R38
Precision Resistor R31
Offset Adjustment R33
Filter Amplifier A2
Filter Amplifier Al

Figure 7. A.F. L. D. Electronics in Console, Plan View

Figure 8.- ELECTRONICS IN CONSOLE TOP, PLATES TURNED OVER

801	Precision Resistor R130
802	Precision Capacitor C62
803	P Meter Amplifier A8
804	Precision Resistor R51
805	Trim Resistor R58
806	Trim Resistor R78
807	Offset Adjustment R73
808	Precision Resistor R77
809	Filter Amplifier A4
810	Filter Amplifier A5

Figure 9 - ELECTRONICS IN CONSOLE, TOP OF SECOND PLATES TURNED OVER
901 Precision Resistor R161

902 Precision Resistor R158
903 Offset Adjustment R162
904 Difference Amplifier A5
905 Trim Resistor R99
906 Difference Amplifier A6
907 Trim Resistor R103
908 Precision Resistor R137
909 B/A Meter Amplifier A7
910 Precision Capacitor C53

Figure 10 - AFLD INSTRUMENT IN TEST FIXTURE

1001	Instrument in Housing
1002	Pressure Release Valve
1003	Test Fixture Removable Wall
1004	Blower Motor for Tungsten Lamp

Figure 10. A.F.L.D. Instrument in Test Fixture

Figure 11 - AFLD INNER VIEW OF TEST FIXTURE

1101	Tungsten Lamp Housing
1102	Light Exit for Lamp
1103	Diffuser
1104	Diffuser Holder

1201
Mounting Ring
1202
Diffuser Plate
1203
Stand Off
1204 Mirror
1205
Mirror Holder

Figure 12. A. F. L. D. Sun Tirget

The light from the telescopes then enters $a_{;}$reversed beamspırter which combines the beams. The ratio of.ground reflected light transmitted by the beamsplitter to sunlight transmitted is $4: 1$. The combined light bundie is collimated by a lens located in the far end of housing 105. The light then enters the prism block located in housing. 111. This prism block has three 45° surfaces. The first surface has a polarizing coating which rejects one plane of polarization. The next surface \ddot{s}^{\prime} plits the beam again in a ratio of 1:1. The reflected light goes to the D-2 Iine filter block. The transmịte light is totally reflected at the third surface and directed into the continuum filter block and thence int'o the lower photomultiplier. The light bundle which enters the D-2 filter next enters the window•of the upper photo multiplier.

The lower photomultiplier is shown in locations 108 and 109. Th continuum filter block has its heating element and temperature sensor at location 110. The upper in-1ine filter block, physically similar to 110 , is shown in location 113, and the other photomultiplier in locations 114 and 11 Location 116 shows part of the electronics chassis located underneath the mounting plate 102.

The electronic parts are described in a later chapter. Figure 2 and 3 show the mounting plate from the opposite side.

Figure 4 shows a view of the electronics console. A detailed description of its function is given in Chapter 6. The holding screws which must be removed to slide the front panel with all the electronic parts out of housing 417 appear as item 401.

402, 403, and 419 are phone jacks with spring covers for connectior of a recording instrument for $\frac{B}{A}$ and p signals. 419 is for use of the oscilloscope 416 for test and adjustment purposes.

The temperature control indicators are in locations 404 and 400. 408 is a temperature-set knob which can be used to change the temperature of the fn-line filter package. (Normal setting: 170). 409 are test points for signals A, B, C, and $D .411$ is the main switch. It has OFF, STANDBY, ON, and TEST positions. Fuses necessary to protect the system are in location 410. 414 is an indicator for the $\frac{B}{A}$ ratio. 412 switiches bandwidth of this signal from 20-10-5-2 cps. 415 indicates the ρ signal. It has a bandwidth switch 413 allowing bandwidth to be changed from 20 to 2 eps in the same steps as 412. The sensitivity of the system oscilloscope can be changed when used as a test instrument. This can be done on adjustments 418. The ρ scale can be changed by switch 405 .

Figure 5 shows the interion of the electronics console. The rear view of the front plate is shown in location 507. Certain elements, such as the analogue computer, need to operate in a controlled temperature range. This is accomplished by a heater blanket on cover 506 which is controlled to about $35^{\circ} \mathrm{C}$. Oscilloscope housing 503 can be removed from the front panel by removing the hold screvs and the plug 504. The 505 plug connects between electronic assemblies. The $15 V$ precision $D C$ power supply is at location 505.502 show the instruments indicating p and $501 \frac{B}{A}$ shown from the rear. Note: The temperature controller for 506 is not shown in Figure 5 , it was after the photo was taken installed piggy back on box 506. Figure 6 shows the electronics in the console with the heater cover 506 removed. It is a side view. Details are described in paragraph 6. Figures 7, 8, and 9 are also described in detail in paragraph 6.

Figure 10 shows the instrument in the text fixture. (See test' descriptions.)

Figure 12 shows the sun target. It consists of a 10-inch horizontal plate covered with a white diffusely.reflecting paint. . The sunlight, having access to the horizontal plate, is diffusely reflected; and collected by mirror 1204 which sends"it down through the center of the diffuser" 1202 into the upper window of the instrument.

3.2 CIRCUIT DESCRIPTION

3.2.1 Signal Flow (Instrument) Reference 625-2021

"The light entering the telescopes is chopped at 240 Hz and 480 Hz for the ground and sky looking telescopes, respectively. Each of the photomultiplier tubes receives light from both telescopes. $V-1$ is the energy at the wavelength of the sodium absorption line and $V-2$ the energy at a wavelength approximately $2 \AA$ removed from the absorption line. The resulting four signals are in a sequence which has been arbitrarily labeled as follows for convenience:

$$
\begin{aligned}
& A=\text { sky looking continuum }(480 \mathrm{~Hz}-\mathrm{V} 2) \\
& B=\text { sky looking sodium line }(480 \mathrm{~Hz}-\mathrm{V} 1) \\
& \mathrm{C}=\text { ground looking sodium line }(240 \mathrm{~Hz}-\mathrm{V} 1) \\
& D=\text { ground looking continuum }(240 \mathrm{~Hz}-\mathrm{V} 2)
\end{aligned}
$$

These signals are applied to synchronous detectors (22-Z5) which have as their output a D.C. component proportional to the signals.

The filter amplifiers A-1 through A-4, in the electronics consome, remove the ripple component and prepare the signal for application to the computer.

3.2.2 Signal Flow (Console) Reference 625-2023

The first computer element $Z-1$ has B "and A applied to it and as its output $K \log B / A$ where K is a gain constant. $Z-3$, operating in the exponential mode, receives the input $K \log B / A$ and a scale factor, and pro. duces an output $K_{1}, \frac{B}{A}$. This output is buffered by $A-7$, a unity gain amplifier, which, in addition to driving a meter, may be loaded with a $1.2 \mathrm{~K} \Omega$ load: The output of $\mathrm{Z}-1$ is also applied through a voltage divider to the exponential element $\mathrm{Z}-2$ which, as the second input, receives the signal D such that its output is equal to $\frac{B D}{A}$. This voltage is applied to the inverting terminal of the differential amplifier A-5.' The noninverting terminal has the signal C applied to it plus a signal $n(A-B)$ where n is less than one. The amplifier has a gain of four and consequently at its output appears the signal 4 ($C-\frac{B D}{A}$) + 4n (A-B). This is one signal applied to the logarithmic element $Z-4$. The signals $A \cdot$ and B are also applied to the noninverting and inverting terminals of the differential amplifier A-6 which, because of its gain of 8 , has as its output the signal $8(A-B)$. This is the second signal applied to $Z-4$, which performs the division and has as its output

$$
K_{1 n g} \quad\left(\frac{4\left(C-\frac{B D}{A}\right)+4 n(A-B)}{8(A-B)}=\frac{1}{2(A-B)}\left(C-\frac{B D}{A}\right)+\frac{n}{2}\right)
$$

The exponential element $Z-5$ has this signal applied to it plus a scaling constant. Its output is then

$$
\frac{K_{2}}{(A-B)}\left(C-\frac{B D}{A}\right)+K_{3}
$$

where:

$$
\mathrm{K}_{2} \text { and } \mathrm{K}_{3} \text { are constants }
$$

This signal is applied to the meter buffer amplifier A-8 and the oscilloscope. attenuator.

3.2.3. Auxiliary Circuits

Besides the signal processing circuits, the electronic console contains power supplies, temperature controls, reference generators, and test circuits.

3.3 CIRCUTT DESCRIPTION - INSTRUMENT - REFERENCE 625-2021

The photomultiplier tubes are potted assemblies containing the dynode divider string. They are operated with their anodes grounded and negative high voltage applied to the cathodes. RI serves to equalize approximately the gain of V1 and V2 by lowering the high voltage across V2. The high voltage is derived from $Z-1$, an externally adjustable switching type supply operating with a 28VDC input. ${ }^{\circ} 2$ is selected to adjust the $H V$ to between 1800 and 3500 V . The signal from $V-2$ is applied to the preamplifier A-2. This is a high input impedance operational amplifier. R35 and R36 form a voltage divider that serves to offset the zero signal output voltage to approximately 6 volts. This allows a peak-to-peak signal excursion of nearly 18 volts at the output. The feedback is tapped off the voltage divider formed by R19, R20, R21, C8, and C9. The position of the slider on R20 determines the portion of the output voltage that is fed back to the input at chopping frequency. At DC, all of the output current is fed back, thus suppressing
dark current effects on the voltage swing capability of the ämplifier. R17 is the operational amplifier trim resistor and $R 40$ is a suppression resistor to forestall high frequency oscillations. The same description applies to A-3. C12 serves to block the DC component; A C is applied via the isolation resistor R27 to the coupling transformers T1 and T2.

The secondary windings of the transformers apply the signal to the transistor choppers $\mathrm{Z}-2$ through $\mathrm{Z}-5$. The reference phase for the choppers is derived from the reference lamps D2 and D3 mounted on the motor assembly. Their light output is modulated by the same chopper wheel that modulates the signal light beams. PIN diodes CRI and CRI2 are exposed to the modulated beams and produce a current output of the same frequency characteristics. The PIN diodes are backbiased by +15 V through R3 and R10 respectively. The ground return and load resistors are $R 4, R 5$, and $R 6$ on $C R 1$ and the appropriate resistors on CR12. C1 is a filter capacitor. C2 blocks the DC from the operational amplifier input. A-1 is a high gain operational amplifier that operates essentially open loop until the zener diode CR6 conducts and limit any further rise or fall in the output voltage. $R 7$ is the trim resistor and R8 and R9 provide bias for the zener diode. The output of $A-1$ is coupled via R29 and R30 to $Z-2$ and $Z-4$, and via R33 supplied to the electronics console. The output of $A-4$ drives the chopper $Z-3$ and $Z-5$ via the limiting resistors R30 and R32. The choppers $22-25$ connect alternately the two secondary windings to the output at the reference phase, thus demodulating the square wave input. The outputis are fed through shielded pairs to the electronics console.

3.4 CIRCUIT DESCRIPTION ELECTRONICS CONSOLE - Reference, DIagram 0<כーLULS
 The four filter amplifiers (Al to A_{4}) are identical; therefore

 only one will be discussed. A-1 is a high gain operational amplifier operating at unity gain from $\dot{\mathrm{D}} \mathrm{C}$ to approximately 20 Hz . The resistor, capacitor networks consisting of $\mathrm{R} 1, \mathrm{C} 1, \mathrm{R} 2, \mathrm{C} 2, \mathrm{R} 3, \mathrm{R} 4, \mathrm{R} 5, \mathrm{R} 6, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7$, and R 8 provide and C3 provide an impedance to the noninverting input similar to that seen by.the inverting input. \therefore The resistor network. R12 through R16 allows a voltage offset to be introduced as compensation for any zero offset that may exist in the demodulators. RI7 and C8 form another filter section before application of the signal to the computer. The switch S-I allows the inputs to be grounded and, by removing the short across R 9 , raises the amplifier gain to simplify the zero adjustment. $\mathrm{S}-1$ also disconnects the output from the computer, connecting the latter to point A on the calibration network. The network consists of R116, R117, R119, R120, R122, R123, R124, R125, and R126. The D amplifier $A 4$ differs from the A, (A1) B, (A2) and C (A3) amplifiers in the switch and load arrangements. An additional pole on switch S 61 .connects. R160 to the amplifier in position ONE and to the test network in position TWO.

The logarithmic-exponential elements are sealed plug-in units, their only external circuitry being the calibration resistors, switching arrangement, and the compensation network discussed below. The calibration resistors R83, R86, R112, R113, and R115 are placed across the appropriate. input terminals by the associated switches $s-5, S-6, s-9, S-10$, and $s-11$ for zero and gain adjustment. Terminal R is connected to pin 2 on the
oscilloscope connector and has the oscilloscope sweep wave form applied to it. The compensation network R115, R156, R157, R158, R159, and R160 is located between Z-1 and Z-2. R155, R158, and R159 are isolation resistors. R156 and R157 form a voltage divider, allowing a portion of D tapped off by R160 to be applied to pin 10 on $\mathrm{z}-2$. The scaling potentiometers R111 and R114 complete this portion of the computer.

A-5 is a differential amplifier as long as the input voltage to .. noninverting side exceeds the input to the inverting side. The output, therefore, is restricted to positive voltages. This is achieved by $0-2$ which will conduct as soon as the output tends to go negative, clamping its collector to the input existing at R90. The latter serves to equalize the gain of the two inputs. A-6 is a second differential amplifier using the same type of operational amplifier and circuit configuration as A-5 except that there is no constraint placed on the output. The X8 gain of A-6 is achieved by tapping the feedback off the diVider formed by R108 and R109. R162 allows portion of the A-6 output to be fed to A-5 to achieve a constant offset at the output of the computer. The meter amplifiers A-7 and A-8 are unity gain amplifiers which, by means of switch selected capacitors in their feedback loops, allow the output bandwidth to be restricted to $20,10,5$, or 2 Hz . A similar bandwidth restriction is placed on the scope display by switching in $\mathrm{c} 105, \mathrm{cl06}, \mathrm{Cl07}$, or Cl 08 C . Q-1, by chopping the scope signal at reference phase rate, provides a reference line on the oscilloscope. This eliminates the need for periodic checking of zero position. Regulated $(0.05 \%) \pm 15$ volts is supplied by the Philbrick PR300C pover supply. This unit should not be field repaired but rather returned to the manufacturer. The same holds true for the sealed +28 volt power supply and the sealed temperature
controllers. The latter, however, depend on the external sensor, load and control resistors for proper operation. The control resistor for $Z-6$ is the ten turn potentiometer R150 mounted on the front panel. $Z-7$ has a fixed control resistor R 151 . The sensors are high resistance wires wound around the filter cells in the instrument. Control bridge imbalance is indicated by the front panel zero center meters M3 and M4.

FERKIN-ELMER

4.0 PROGRAM HISTORY

The following work statement lists the actual work performed in comparison with the schedule of the contract.

1. Work started on August 11, 1967. After a brief study of the optical end, the electrical layout was started.
2. Since the whole program was scheduled to be performed * during a five-month period, long lead purchase items had to be ordered as soon as possible.
3. A purchase parts list was delivered to the customer for approval on September 1, 1967.
4. The purchasing of parts was essentially concluded in the middle of September, 1967.
5. On August 18, 1967, the optomechanical layout was started and was concluded on September 22, 1967.
6. On September 29, 1967, a design revies was beid at Perkin= Blmer. It was agreed to follow the design as proposed. We were, therefore, able to start detailing and finish ordering special parts to be fabricated.
7. About 70 percent of all purchase parts were received by November 10, 1967.
8. An end item test plan was presented. After several changes were made, the plan was put into final form by December 15, 1967.
9. On December 1, 1967, assembly of the optomechanical inm strument was started. It was finished by December 29, 1967. Fabrication of the electrical console was finished by .January ${ }^{-1} 5,1968$.
10. A storage procedure for the end item was delivered by December 29. 1967.
11. Preliminary tests were performed and the Acceptance test was scheduled for January 30. 1968.
12. Considering that this instrument was built for the first time and not enough experiénce was available zoncerning its operation and trouble shooting, further nork was. performed to minimize noise and to find reasons for the variation of the B/A signal. Spurious high frequency oscillations which had developed Nere suppressed. by additional bypass and feedback apacitors. Low frequency variations were found to originate from undesired chopper blade motions. A notor with 3 times the speed was substituted moving such noise contributions outside the bandpass of the instrument. (20 cps)
13. This work took longer than expected but was concluded by March, 1968. A handicap was the lack of sunny days at this time in New England.
14. Material for the final report was assembled at this time and the final report delivered at the 15 th of Apri1, 1968.

15: The Acceptance Test was held on March 28, 1968. The instrument was accepted.

PERKIN-ELMER

5.0 COMPONENT TEST

5.1 INSTRUMENT BOX PRESSURE TEST

The instrument housing was subjected to a simulated altitude of 90,000 feet for a duration of fifteen minutes. At low pressure the indicator switch instal led in the housing showed that a minimum pressure of .07 standard atmosphere pressure was maintained in the housing. No deformation was observed. On return to ambient pressure the release valve had to be activated for release of the cover.

5:2 PMT VIBRATION TEST

The photomultiplier tubes were vibration tested at the tube manufacturer's facility. The tubes were subjected to vibration of 5 g 's from 15 to 500 cps and a displacement of .25 inch from 5 to $15 \cdot \mathrm{cps}$ along the major axis of the tubes. Perkin-Elmer personnel observed no vibration effects.

5.3 AMPT.TFIER BANDPASS

Filter amplifier bandpass was measured using an audio oscillator with 15 V peak-to-peak as the signal source. The output voltage versus frequency in db below the input is shown on the attached bandpass curve, Figure 13.

5.4 TEMPERATURE CONTROLLERS

The temperature of the optical filter blocks was monitored with a thermocouple instrument. The measurement indicated that the controllers stabilize the temperature such that resolution of the thermocouple instrument limits the experiment. $\left(\pm 0.5^{\circ} \mathrm{C}\right)$

PEAKIN-ELMER

Figure i3. Amplifier Bandpass Curve

5.5 MOTOR SPEED

Motor synchronous speed was measured "by two independent methods:
(1) the frequency of the reference generator was measured and (2) a fiducial marker on a chopper blade was observed using a strobe light.

5.6 COMPUTER ELEMENTS

The computer elements were tested for accuracy and dynamic range. It was found that compensation for a quadratic deviation from linearity had to be incorporated to achieve the necessary accuracy. For this purpose a portion of the multiplier applied to the exponential element is added to the logarithm of the ratio as yielded from the logarithmic element. Published accuracy figures of the computer elements are 0.1 percent. However, laboratory measurements showed that an overall accuracy-of two to five percent at any point in the dynamic range more accurately describes the units. Since the error appears essentially quadratic as mentioned above, it remains small for most of the range. The added compensation, hoever, reduces the error to $\pm 10 \mathrm{mv}$ anywhere in the dynamic range. (worst condition 0.25%)

3.0 ELECTRONICS CONSOLE TNITIAL ADJUSTMENE PROCEDURE

Switch Settings
Front Panel
Function Switch Off
Banawuutil switches 20 Hz
Scope sensitivity Hzgh
Test scope Off
Internal
All switches to maximum cow position (Op)
Turn function switch to STBY. Oscilloscope power on. Aliow acleast thirty minutes wammup before proceeding.
Zero Adjustment of Filter Amplifiers
Function Switch to On
Use oscilloscope test probe via 33 (front panel test Jack)
oscilloscope $10 \mathrm{mv} / \mathrm{cm}$
Set S1 to position
Test probe to TP-1
Adjust R18 for zero output
Set 81 to position 1
Adjust R13 for zero output
Move Test probe to TP-2
Set S21 to position 2
Adjust R38 for zero output
Set S21 to position 1
Adjust R33 for zero output

```
    Move test probe to TP-3
    Set S41 to position 2
    Adinst R58 for zero output
    Set S41 to position 1
    Adjust R53 for zero output
    Move test probe to TP-4
    Set S61 to position 2
    Adjust R78 for zero output
    Set S61 to position 1
    \because
    Adjust R73 for zero output
    Remove test probe
    This completes the null adjustments of the filter amplifiers.
Zero and Gain Adjustment of Computer Elements
    Test probe to 21-10
    Adjust horizontal gain for 10V-p-p of ramp voltage
    Adjust horizontal position for zero V at start of ram.
    Test probe to TP-5
        Set S5 to position 2
        Adjust Z1, Amp 2, for zero output (scope at 10 mv/cm)
        Set S5 to position 3
        Adjust Z1, Amp 1, for zero output
        Remove scope probe
        Set S5 to position 1
```

Test probe to TP-7
S6 to position 2
Z-2 \log exp. switch to log.
Adjust Anp 2 for zero output
S6 to position 3
Adjust Amp 1 for zero output
Return S 6 to position 1

Test probe to TP-10
Switch on Z-e to log, S9 to po:
Adjust Amp 2 for zero output
Set S9 to position 3
Adjust Arp 1 for zero output
Return S 9 to position 1

Test probe to TP-11
Set S10 to position 2
Switch on Z-5 to log.
Adjust Amp 2 for zero output
Set Sl0 to position 3
Adjust Amp 1 for zero output
Return switch on Z-5 to exp.
Return S10 to position 1

Test probe to•TP-12
Set S11 to position 2
Adjust 2-4, Amp 2 for zero output

Set S11 to position 3
Adjust Amp 1 for zero output
Return S11 to position 1
This completes the zero adjustment of the computer log, exp. elements

Test probe to TP-8
Set $\mathrm{S7}$ to position 2
Adjust R99. to positive output then reduce output to just reach zero, do not rotate R99 further since a negative output will not be indicated.

Set S 7 to position 3
Adjust R90 in a manner similar to R99 observing the same caution, i.e., approach the zero from the positive side and do not rotate adjustment beyond just reaching zero.

Test probe to. TP-9
Set S8 to position 2
Adjust Rl03 for zero output
Set S 8 to position 3
Adjust R104 for zero output

This completes the zero adjustment of the differential elements
Set RIll to approximately midurange
Connect a jumper lead from RIII slides to TP-6
Connect a precision voltmeter (DVM-Fluke, etc.) to TP-5
Set S 5 to position 4
Adjust the gain controls of 21 for 420 mv output
Connect a jumper from TP-6 to TP-18

Connect the meter TP-5 to TP- 10

Set S 9 to position
Adjust the gain of $Z-3$ for zero voltage on the meter
Remove jumpers and meter from the test points
Return S5 and S9 to position 1
Connect the jumper from R111 to TP-17
Set 56 to position 4
Connect the meter to TP-7

Adjust the gain control of $\mathrm{Z}-2$ for an output of 262.5 mv on the meter

Move the jumper from TP-17 to TP-19
Connect a jumper from TP-19 to TP-20
Connect the meter from $T P-12$ to ground
Set S11 and S10 to position 4
Adjust the gain of $\mathrm{Z}-4$ for 420 mv on the meter

Connect the meter from TP-11 to TP-12
Adjust the gain of $2-5$ for zero output on the meter
Disconnect meter and jumpers
Return 810 and S11 to position 1
Set•log. exp. switches on $Z-2, Z-3$, and $Z-5$ to exp.
This completed the gain adjustment.
Scale Factor and Offset Adjustment
Turn function switch to test, switches S1, S21, S41, and S61 to position 2

Adjust R111 to give a B/A reading of 0.75 on ML
Short circuit point A to point D with a jumper lead
Short dircuit point B to point C with a jumper lead
Turn 57 to position two.
Connect a differential meter or oscilloscope between Z-2 pin 10 and point C.
Adjust R160 for least deviation from a constant value while rotating RI17 from end to end and Z-1 Amp \#1 for least derivation from zero.
Remove meter' or oscilloscope, set 'S-7 to position one and adjust R162 for zero indication on the front panel ρ meter
Remove jumpers, return all switches to position one
With a diffused lamp illuminating the aperture of the sky looking telescope adjust R10 and R30 for equal outputs on their slides
Move the lamp to the other aperture and adjust R50 and R70 fo equal outputs. If this is not attainable gain adjustment of the P.M.T. channels has to be made first.
6.1 GAIN ADJUSTMENT OF PMT CHANNELS IN INSTRUMENT
Front panel settings
Function switch Off
Bandwidth switches Any
Oscilloscope Off
Sens.
$0.02 / \mathrm{cm}$
Turn function switch to STBY and allow at least thirty minut warmup. R20 and R25 maximum cw. Oscilloscope test probe A-3-4. Substitute decade resistance box for R2
Function switch to test
Adjust resistance box for $\quad V \mathrm{p}-\mathrm{p}$ on the oscilloscope

PERKIN-ELMER

Function switch to STBYNote decade box reading and obtain and connect precision resistorof the noted value for R 2
Substitute decade resistance box for R1
Oscilloscope test probe to A-2-4
Function switch to test
Adjust decade resistance box for ∇ p-p on the oscilloscope
CAUTION: DEGADE BOX MUST BE FLOATED AT -2.5 kV FOR THIS TEST
Function switch to STBYNote decade box setting, obtain and connect appropriate precisionresistor for R1
Function switch to testFurther equalize gain by comparing the voltages at $A-2-4$ and $A-3-4$and trimming for equal output with R20 and R25
Function switch to off
Remove test probe

7.0 SYSTEM ACCEPTANGE TESTS

7.1 ACCEPTANCE. TESTS PROCEDURE. FOR FRAUNHOFER LINE DISCRIMINATOR

7.1.1 Genera1

The Acceptance review of the Fraunhofer Line Discriminator (FLD) will be attended by, representatives of"NASA; the Geological Suryey; thë'Illinois Institute of Technology Research Institute. Outdoor tests will be conducted on a reasonably clear and cloudless day.

7.1.2 Information

The following information was received by the attendees prior to the acceptance tests.
a. Curves verifying absolute transmission (percent versus wave length of both Fabry-Perot filters. Performance was verified with a calibrated monochromator capable of $0.1 \AA$ (one-tenth Angstrom) spectral resolution. Transmission curves included both principal and adjacent orders within $20^{\circ} \AA$ of the center wavelength of each filter.
b. Data indicating spectral shift in either center wavelength or finesse due to change in temperature for both Fabry-Perot filters.

7.1.3 Sensitivity Test Arrangement

Figures 10 and 11 show the arrangement which will be used for acceptance tests at the Perkin-Elmer plant. The test equipment consists of a light tight wooden box which is painted matt black inside. The sides of the box' will be removable. The box has a 45 degree surface covered with a white
non-Iuminsecing diffuser 1103 to reflect incoming sunlight into the groundlooking window of the instrument.

The sun-looking window will be directed upward toward the sky. The FLD will stand vertically (see Figure 10), and the box on which it is mounted will be rotated as the sun angle changes in order to maximize the time during which tests can be made. The mounting box will be equipped with a sun shade and a DC powered tungsten lamp, Location 1102, both of which can be installed or removed as required. A power control will permit the intensity of the tungsten lamp to be regulated.

7.1.4 Required Sensitivity Tests Procedure

All mechanical, optical, and electronic elements of the FLD will be operated during the required tests.

Step a. - The shade and lamp will be removed from the mounting box and a calibrated light meter wifl be used to measure the incident solax radiation at the ground-looking window at the time the test is performed. (This measuxement will help to compensate for any local atmospheric conditions that may affect the intensity of the solar radiation at the time of the tests.) The calibrated meter will be provided by the Government. A neutral density filter will be placed in front of the ground-looking window; this filter will have sufficient absorption that when used with the white diffuse reflector, the combination will simulate a ground reflectance value of less than 50 pexcent at the aperture of the instrument. The gain of the D channel signal will be monitored to ensure that saturation does not occur for reflectance values below 50 percent, and this gain setting will be noted. The sunlight opening will then be closed with the sun-shade. The
lamp will be installed and its current adjusted until the D channel signal indicates either 0.14 times its former value or that fractional part of the calibrated light meter reading which is appropriate to achieve 5.8×10^{-11} watts $/ \mathrm{CM}^{2} / \AA /$ degree of arc: (0.14 times its former value would be appropriate if published values for the solar flux are used for the reference level; this choice will be made at the time of the tests.) This lamp adjustment will be noted and subsequently used to simulate the required fluorescence level.

Step b. - With the lamp operating and the sun-shade remaining in position, the sides of the mounting box will be removed, permitting skylight to illuminate the white diffuse reflector (In effect, this will superimpose a Fraunhofer spectrum on the simulated fluorescence signal from the lamp, and the combined signals will represent an operational condition under which the contractually - required minimum detectable luminescence signal, 5.8×10^{-11} watt/ $\mathrm{CM}^{2} / \mathrm{A} / \mathrm{deg}$. , is superimposed upon a ground-reflected signal.) The ρ output of the FLD will then be recorded.

Step c. - The lamp will then be turned off to simulate a zeroIuminescence condition and the noise level on the p output of the FLD will be recorded.

Detection of the contractually - required radiation level will be considered adequate if the p signal recorded in step b has at least a $2: 1$ signal to noise ratio, as read on the FLD panel oscilloscope, compared with the p signal recorded in step c.

7.1.5 Environmental Tests

The environmental tests will be performed as required in paragraph 2.0, Appendix V of the contract.

7.1.6 $\frac{\text { Desired Sensitivity Test }}{\text { fresh water }}$ Detection of emission of Rhodamine dye in

Weather permitting, tests will be conducted with Rhodamine WT, a dye with emission properties identical to Rhodamine B, but with higher stability and insignificant absorption qualities. The FLD will be set up out of doors in. anlight at a convenient distance from a suitable tank which will be provided by the USGS. The bottom and sides of the tank will be painted flat black to reduce reflected light.

The tank will be placed on a utility cart and filled with fresh water. The water will be permitted to stand overnight in ordex to reduce chlorine content. (Chlorine has a quenching effect on rhodamine emissions.) In preparation for the tests the long dimension of the instrument will be oriented parallel to the sun's rays. The ρ output. of the instrument will be read to establish a background noise without dye emission. Next, dye will be inserted in a quantity sufficient to achieve a concentration of 5 parts per billion by weight and the instrument ρ output read again. .

Sufficient dye will then be added in several steps to achieve higher concentrations as results indicate until a ρ signal significantly above the noi level is detected.

The dye will be provided by the USGS. A suitable outdoor site, utility cart, instrument mounts, and a suitable power supply will be furnished by the Perkin-Elmer Corporation.

7.2 SYSTEM ACCEPTANCE TEST Reference Record $1 a, 1 b, 2 a, 2 b, 3 a, 3 b .4 a .4 b$ and 5 a .

7.2.1 General

After a final adiustment following the procedure outlined in paragraph 6, the acceptance test was scheduled. The weather was finally acceptable on the twenty-eight of March. Mr. William Hemphill and Mr. F. Gilpatrick, both from USGS, witnessed the tests and had the authority to accept the instrument on behalf of the NASA office.

7.2.2 Threshold Tests

The D signal was attenuated by a factor of 2 and measured to be 4.25v. It was shielded from direct sunlight; and the B/A ratio was 0.92 . The box was closed and the angle of the diffuser was set to accept light from the tungsten lamp. (Note; For all the tests the test fixture as illustrated in Figure 12, were used.

References recordings $1 a$ and $1 b$.
Note: :All ρ values are noted in scale intervals of 415 .
(1) The D was set to 0.39 V . This resulted in a p output of 1.0 .
(2) The box was opened and the diffuser 1103 shielded from direct suniight. The p was found to be 0.88 and the B/A ratio was 0.93 . The light was then turned off and a slightly negative ρ was indicated on meter 415.
(3) The box was closed and the ρ showed a negative value; B / A was 0.96 .

BRINGOS INDIAMAPOLIS, IND., U.S.A. GHART ME. 4313-C

(4) A recheck was made of the D signal and was found to be 5 V indicated by an instrument connected to plug 409.

A slight negaEive p indication was present and the offset was then adjusted and the test continued.

The duffusex 1103 was attenuated by fatotor of $2 . \mathrm{D}$ was found to be 5v; direct skylight was shielded. The box was closer and the angle of the diffuser 1103 changed to accommodate the tungsten lamp 1102 .

The following points refer to recoraings $2 a$.
(1) D was set to $0.5 ; \mathrm{B} / \mathrm{A}$ was read to be 0.87 . These readings axe meter readings on 414 . the indicated ρ was 0.67.
(2) All covers were removed and the diffuser shielded from direct sunlight ρ was found to be 0.75 and B / A was 0.86 .
(3) The light was turned offf and p was indicated to be 0.1. The B/A was 0.86.
(4) All covers were put back on and p, showed a slightly negative value, (Recorder zero line at 20 for all recordings.)

At 11:40 a.m. a new threshold test was stayted which references recordings 2b, The D signal was found to be 4.8 V with the diffuser shielded from direct sunlight and attenuated by a factor of 2. The box was then closed and the angle changea to the diffusex to accomodate the tungsten lamp. See Recordings 2b.
'I) D was set to 0.48 by changing the lamp current. B/A at this time was 0.87 and the indicated $\rho 0.80$.
'2) The covers were removed and the diffuser shielded from direct sunlight. The ρ indication was 0.83 ; B / A was 0.87 .
(3) The light was turned off. The indicated ρ was 0.12 B/A at this time was still 0.87.
(4) The covers were put on. . ρ was -0.05 leaning slightiy below 0 on the indicator; B / A had shifted slightly to 0.88 .

The specifications call for a threshold measurement as describec above to be at least twice the noise in the ρ indication at 20 cps bandwidth. The actual measurement show that this specification has been met.
7.2.3 The specifications call. for a desirable test which was made by using a.water tank of 2 feet $x 2$ feet $x 6$ feet, painted inside black, and filled with $c l e a r$ water to $1 / 2$ meter depth. The water was then made fluorescent by dissolving various amounts of Rhodamine dye.

The weather conditions changed to the worse; more haziness appeared in the clouds. A water test was made which showed at about 40 ppb concentration, a distinct increase in indicated ρ. The test was conducted up to 100 ppb concentrations.

The conclusion of this test was that the test should be repeated when the weather conditions were better. The test was repeated at $2: 30$ p.m. that same afternoon and showed results which are recorded in the following:

The test fixture was set on the water tank so that the ground looking telescope pointed toward the sunlit water"in the tank. (Diffuseer 1103 removed.) The tank was filled with fresh water. The following list indicates ρ, the B / A ratio, and the A signal as indicated by a voltmeter plugged into outlet 409. Note recordings $3 \mathrm{a}, 3 \mathrm{~b}, 4 \mathrm{a}, 4 \mathrm{~b}$, and 5 a . The recordings were made at the same time the readings on meters 415 and 414 and the A signal.

The readings are listed on the following table:

Rhadamine in PpG .	p Intervals	B/A	$\begin{gathered} \text { A } \\ \text { Volts } \end{gathered}$	Remarks
-Fresh Water	0.08	'0.82	1.03	Rec. 3a
- 5	0.09	0.83	1.00	
10	0.09^{+}	0.835	0.98	
15	no R.	no R.	no R.	Rec. 3b Cloud
20	0.10	0.85	0.80	Rec. 4 a Gloud
30	0.13	0.85	0.92	
40	0.15	0.85	0.90	2.45 p.m.
50	0.16	0.85	0.75	
60	0.185	0.86	0.70	Cloud Rec. 4 a 2.55 p.m.
70	0.20	0.86	0.78	
80	0.24	0.86	0.77	
90	0.26	0.86	0.75	Rec. 5a
100	0.275	0.85	0.74	

The water temperature was found to be $+45^{\circ} \mathrm{F}$ at the end of the test at $3: 40$ p.m. The remaining available solution of water was mixed with
the water. The ρ indication was $1.0 ; \mathrm{B} / \mathrm{A}$ at this time was 0.87 and the A . signal was found to be 0.55 V . The lov magnitude of A was due to the time of the measurement. It can be seen on the recordings $3 b$ and $4 a$ that the ρ value was obscured at times. Clouds were covering the sun. It can also be seen. that these are excellent results since a threshold of 5 ppb was recorded at a B / A ratio of 0.83 which is typical for Connecticut weather conditions at the time jf these tests. On clear days the B/A ratio was found to be 0.75 to 0.7% which would decrease the noise.

8.0 AIRBORNE FRAUNHOFER LINE DISCRIMINATOR STORAGE PROCEDURE FOR END ITEM
 8.1 GENERAL

The End Item is shipped in wooden boxes made from $1 / 2$ inch navy plywood with stiffened edges. The container has two handles for easy transportation. The cover plate is screwed on for easy removal of the instrument. There are two boxes - one, for the electronics; one, for the instrument. The larger box, to be approximately $30 \times 30 \times 20$ inches high, houses the electronj console.. This box has a compartment for the lo-foot connecting cable and the cable for the prime power of 115 V 60 cycle. The boxes have soft padding inside to avoid vibration or shock damage to the equipment.

The instrument shall be stored in the provided wooden container, which is approximately $12 \times 18 \times 22$ inches high. This box is also wrapped in soft padding.

When-the system is not in use the instrument as well as electronics console and cables should be stored in the shipping containers provided, to avoid physical damage. Storage temperature should be limited to $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. After each flight, the pressure release button on the instrument should be depressed in order to make sure that atmospheric pressure is regained in the instrument metal housing.

The instrument housing contains, behind the pressure relief valve, a dessicator. After long periods of storage, the instrument box should be opened in a room containing air below 50 percent humidity and the Silica Gel. replaced if the blue color has changed to pink. The electronics console should be stored in dry air environment. Dessicators should be placed in the shipping container inspected and, if necessary, replaced periodically.

Abstract

9.0 SUN TARGEIS AND SCALING OF THE SYSTEM

Perkin-Elmer has experimented with several different types of sun targeルs.

\subsection*{9.1 SUN TARGEIS}

We have made one sun target (No. 1) which projects a ten inch diameter disc painted matte white and containing a 2 I/4 inch hole in the center. Light striking the upper surface of the disc is directed by means of a convex first surface mirror into the upper window of the instrument to create the A \& B signal A second sun target (No. 2) consists of a large tube polished on the inside with Plexy-glass windows at the top and the bottom of the tube. The lower window is frosted. A third sun target (No. 3.) consists of parts of a fish eye lens. We have also tried such simple sun targets (No. 4) as frosted glass plates or opaque plates.

We found that any omidirectional sun target which would not require mirror adjustment becomes inefficient at low sun elevations. This deficiency can be compensated for to a certain degree by adjustment described later under scaling of the system.

Perkin-Elmer will deliver all the sun targets including experi-. mental targets which were made with the instrument for use as the observer ma reqüire for different weather conditions.

Our experiments showed that the entrance aperture of the sun-looking telescope should be evenly illuminated; it is, therefore, advisable to use sun targets which have diffuser plates incorporated. At high sun angles the simple frosted or opaque glass used as sun target is sufficient.

Sun targets No. 2 and 3 are less efficient than No. 1.

9.2 FAOTOR SCALING

The scale factor voltage applied to $Z-5$ in the compater is based on the $4: 1$ beamsplitting in the optics and the present selection of full scale. deflection for a ρ of 0.5 (i.e., the output voltage is equal to 20p). The beamsplitting of $4: 1$ assumes a 100 percent efficient sun target. For any other target efficiency, therefore, allowance must be made for the scale factor which may be corrected to 0.5ρ equals full scale by resetting R114 to a voltage proportional to the efficiency of the sun target where 100 percent equals 10 volts. If the scale factor is not adjusted as suggested above the full scale reading on the meter no longer represents 0.5ρ. Note: $0.5 \rho \mathrm{x}$ target efficiency full scale. For the effects of such targets on signal-tomnoise ratio and detectivity see Perkin-Elmer Report 8916, page 10.

PERKKINELMER

10.0 OPERATION © MA'TNTENANCE

10.1 INSTALLATION INTO THE ATRCRAFT

The instrument must be installed so that the upper window points toward the sun target and the lower window points toward the floor opening. in the aircraft. The installation of the sun target requires an adapter ring which should be fixed by appropriate means to the top of the cabin of the ait craft. The ring in which the sun target is mounted is shown in drawing No. 625-2019-2 with six screw holes for the location of the different sun targets which are delivered with this instrument.

The instrument box contains shock mounts on mounting plate 102 . The natural frequency of the mount plate is on the order of 13 cps . The windows in the instrument box are large enough to permit soft mounting of the instrument; howevex, it is not required.

A ten-foot cable is delivered with the equipment to serve as a connecting cable between the electronic console and the instrument itself. A second ten-foot cable connects the electronics console to the aircraft $115 \mathrm{~V}, 60 \mathrm{~Hz}$ power source.

The electronics console can be mounted in any convenient location in the aircraft, preferably where the operator can see the sun target to check proper illumination. It is required that the electronics console be soft mounted. The use of foam rubber or other suitable material is recommended to cushion the console with respect to the mounting frame in the aircraft. The best way to mount the console would be to have a framework surrounding the console and to have a foam rubber cushion at least two inches thick between the hard mounted frame and the outside of the console.

10.2 POWER REQUIREMENTS

The only power required to operate the Airborne Fraunhofer Line Discriminator is 115 -volts, 60 Hz . The maximum power input with all the heaters in operation will be approximately 500 watts, of which 300 watts are for heating.

10.3 OPERATION OF THE INSTRUMENT

First: Turn the Main Switch on the console, No. 411, from OFF to STANDBY. This will activate all the heaters and warm the amplifiers to stable operating temperature. The warmup time depends on the environmental temperature but should not be shorter than one-half hour.

Second: Turn the Main Switch to the ON position and one step further to TEST. At the test position meter 414 should read between 0.9 and 1.0 for the B / A ratio. Turning the switch to test position activates the whole system. The calibration lamp indicates proper operation of the system.

The next step is to switch to the ON position. Operation of the system can now begin.

If recording of data is required, phone jacks 402 and 403 are available for the B / A ratio and ρ recording. 10 volts full scale at 9 ma maximum are available at the phone jacks. Recorders for B / A and/or ρ may also be connected to pins n and q respectively on the rear connector. The separate A, B, C and D signals at the front panel may be measured and recorde with instruments with no less than 2000Ω input impedance. A, B, C and D are approximate signal values (± 10 percent).

10.3 Hantuanco

In case of malfunction refer to this troubleshooting chart.

Other causes and procedures as under ON.

11.0 RECOMMENDATIONS

This chapter contains recomendations concerning operation, service and future systems.
11. 1 This will be the very first atworne instrument to exploy the Franhofer Line techaque to sense solar stimulated fluorescence. During the design, considerable care and attention wexe taken in order to minimize known sources of electrical or optical exrors. For example, in order to minimize the effect of rapid spectral changes in the background radiation, the two filter packages have been made with components as nearly identical posstble, with minimal response in the wings of each filter and with the centers of the two filters separated from each other by only few angstrons. Similarly, compute errors have been reduced until they are comparable to the system shot noise. This was done by the use of a constant temperature thermat enclosure and an adjustable correction system for the critical analog units. Hovever, the unexpected should be anticipated, particularly with the fitst-of-a-kind airborne Wht which does not have even a close relative in the laboratory. If any unexpected limtations are discovered during testing and use of the equipment at is essential that these be clearly fidentified and documented so that second空的erations of this equipment can be constructed to take full advantage of thas fery new and promising technique.
11.2 The instrument was designed to openate on a clear sumy day with a naximum variation in solar intenstity of about 3 to 1 . During the acceptance. testing in New England in January and February, much largex variations than this were noted with a barely discernable amount of cloud. If the number of sumy days sufficiently clear for operation proves promibitively small in practice, then a nuber of solutions is possible. These inctude:

PERKIN-ELIMEA

> 11.2.1 A gain control (automatic or manual) on the high voltage power supply which will keep the level of signal A seen by the computer at a constant value and will scale the other signals proportionally.
> -11.2.2 A clamping circuit on the $A-B$ value in the computer so tha a wisp of cloud momentarily reducing the A and B signals . does not produce an inordinately large fluorescence signal as a result of the $(A-B)^{-1}$ normalization factor. The clam would have to have a time constant long compared to cloud induced variations, but short compared to normal variation in solar intensity
> 11.2.3 Manually adjusted $\mathrm{A}-\mathrm{B}$ and B / A computer values to be monito and adjusted by a human operator.
11.2.4 Very low frequency response A and B filter amplifiers.
11.3 Since spurious high fluorescence readings are possible when A and B signals become very low due to clouds it is probably desireable to monitor either A or B together with the fluorescence signal so that data can be inte preted unambiguously and corrected if necessary. Similarly, when the scope is being used to read fluorescence, a separate meter or panel light indication of the amplitude of A would be helpful in distinguishing cloud inducec anomalies from legitimate high fluorescence readings.
11.4 The filter temperature indicators indicate a gomo-go condition but not the actual temperature deviation. A lamp to indicate whether the heater current is off or on would certainly be just as informative and significantly cheaper. Most preferable (and most expensive) would be a meter to indicate directly the temperature error in degrees.

PERKIN-ELIMER

11.5 During the initial testing of the instrument it wás noted that the B/A ratio was a function of the portion of the telescope aperture receiving illumination. The difficulty was traced to a marked nonuniformity on one of the photocathodes. It was minimized by rotating both phototubes ir their holders. In the event that phototube removal is necessary the same procedure should be employed to minimize the B / A variation.
11.6. The calibration lamp is mounted in a spherical socket so that it can be easily adjusted. It has been found that slight motions of the lamp produce variations in the A and B signals and also in the B / A ratio. This is probably partly attributable to the small size of the calibration lamp lens when imaged on the filters and to nonuniformities in the filters and photo-cathodes. The latter are known to be very nonmunform. It is, therefore recommended that a well diffused external tungsten source be used whenever it is desired to set the gains in A and B channels equal and that the calibration lamp be used only*as a secondary refexence.
11.7 The sensitivity of the phototubes can be drastically altered by overexposure to light when the high voltage is on. Care should be taken to avoid this condition by ensuring that either the solar target or the light cap is in front of the solar window and that the ground looking window is never turned upward towards the sun. Recovery can take as long as 24 hours. It should be found by experience in the field if protection devices for the photomultipliers, preventing intense light exposures, are required.
11. 8 . During the few occasions then the B/A ratio has been monitored considerable variation, ranging from 0.7 to 0.9 , has been noted. The reason for this variation is not fully understood. Possible there is some fluorescence

PERKIN-ELMER

in the atmosphere or perhaps there is sufficient sodium contained in the salt nuclei of maritime air masses to selectivity emit Na ${ }^{\text {. }}$. A correlation of B / \dot{A} with weather conditions and perhaps with ambient temperature should be attempted. To reduce the B/A ratio better filters may become available in the near future.
11.9 The need tor temperature control of the analogue computer elements was not established until after the design was complete. As a result, many of the test points and bias adjustments in the computer are difficult to reach. It is suggested that considerable attention be paid to the layout of the logic in any future instrument and that key test points and adjustments be made accessible without the need to remove a heater cover.
11.10 Consideration should be given to single photomultiplier operation of future instruments. This could be achieved by a second chopper arranged to expose the single photomultiplier to first the light bearn which has passed the D_{2} filter block and then to the light which has passed the C filter block. The principal advantage would be an independance of nonuniformity of the photomultipliers and the effect of gain changes would be minimal.
11.11 Larger optical apertures should be considered. (Greater optical transmission efficiency is by the present state of the art not achievable.) The resulting higher light levels at the photomultipliers would better the signal to noise ratios. Signal to RMS noise ratios are as computed, however it is the signal to peak noise which the eye recognizes when viewing the p oscilloscope display.

PERKIN-ELMER

11.12. Presentiy, A, B, C and D signais are. derived internally. The incorporation of convenient means to apply such externally derived signals would allow a more rigarous adjustment. Additional front panel controls to allow critical. parameter adjustements during operation should be considered. See 11.2.3.
11.13 Increase of the efficiency of the sun target would he 1 p to reduce the noise in signal. After field tests it may be found that a change in ratio of optical efficiency between ground looking and reference light is desirable.
11.14 Since it is not contemplated to use the system on board of a fast flying aixcraft, it should be considered to set the bandwidth at a fixed value of about 2 cps.
11.15 Operational use of the system may very probably-indicate that the present scope presentation of p is not very useful, it should be changed to a fast sweep or eliminated completely.

[^0]: Figure 2v, A.F. L. D. Instrument in llousing, Cover Removed
 !

[^1]: Nigure of N.F.1. D. Eteciponie Console, Froot View

