14 research outputs found

    Selection and Breeding of Dairy Cattle in Western Siberia

    Get PDF
    The main objective of stock breeding is to raise highly productive animals, improve existing ones and create new types and breeds of livestock. The main focus of dairy cattle breeding is on increasing milk yield, fat and protein content in milk; preserving fertility and productive longevity; and developing high adaptive properties of suitability for modern industrial technologies. Selection and breeding of black-and-white and red steppe breeds of cattle is aimed at improving the breeding and productive qualities of the animals. These breeds are traditionally raised in Western Siberia. Breeding to improve the economic and productive features of black-and-white and red steppe breeds of cattle led to the creation of new zonal types, including the Priobsky, Kulunda and Siberian zonal types, which are characterized by relatively high dairy productivity. This study showed that the Siberian type of heifers had the maximum milk yield ā€“ 6389 kg, which was 1239 kg and 828 kg more than the Kulunda and Priobsky types, respectively. The same tendency was observed for the third lactation. Animals with a dry period of less than 40 days had lower milk yields than those with a longer period. In terms of the amount of milk and the weight fraction of fat and protein in the milk, the animals exceeded the standard for the parental breed. The duration of pregnancy among the studied animals was within the physiological norm ā€“ 276.1-280.8 days. The research results may be of interest to agricultural students and specialists involved in selection issues. Keywords: reproduction, breed, milk productivit

    Analysis of alternative splicing of cassette exons at single-cell level using two fluorescent proteins

    Get PDF
    Alternative splicing plays a major role in increasing proteome complexity and regulating gene expression. Here, we developed a new fluorescent protein-based approach to quantitatively analyze the alternative splicing of a target cassette exon (skipping or inclusion), which results in an open-reading frame shift. A fragment of a gene of interest is cloned between red and green fluorescent protein (RFP and GFP)-encoding sequences in such a way that translation of the normally spliced full-length transcript results in expression of both RFP and GFP. In contrast, alternative exon skipping results in the synthesis of RFP only. Green and red fluorescence intensities can be used to estimate the proportions of normal and alternative transcripts in each cell. The new method was successfully tested for human PIG3 (p53-inducible gene 3) cassette exon 4. Expected pattern of alternative splicing of PIG3 minigene was observed, including previously characterized effects of UV light irradiation and specific mutations. Interestingly, we observed a broad distribution of normal to alternative transcript ratio in individual cells with at least two distinct populations with āˆ¼45% and >95% alternative transcript. We believe that this method is useful for fluorescence-based quantitative analysis of alternative splicing of target genes in a variety of biological models

    The Connection of the Genetic, Cultural and Geographic Landscapes of Transoxiana

    Get PDF
    We have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape. The main factor structuring the gene pool was the mode of subsistence: settled agriculture or nomadic pastoralism. Investigation of STR-based clusters of haplotypes and their ages revealed that cultural and demic expansions of Transoxiana were not closely connected with each other. The Arab cultural expansion introduced Islam to the region but did not leave a significant mark on the pool of paternal lineages. The Mongol expansion, in contrast, had enormous demic success, but did not impact cultural elements like language and religion. The genealogy of Muslim missionaries within the settled agricultural communities of Transoxiana was based on spiritual succession passed from teacher to disciple. However, among Transoxianan nomads, spiritual and biological succession became merged

    Plants with genetically encoded autoluminescence

    Get PDF
    Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants

    Novel BRET combination for detection of rapamycin-induced protein dimerization using luciferase from fungus Neonothopanus nambi

    No full text
    Bioluminescence resonance energy transfer (BRET) is one of the most promising approaches used for noninvasive imaging of protein-protein interactions in vivo. Recently, our team has discovered a genetically encodable bioluminescent system from the fungus Neonothopanus nambi and identified a novel luciferase that represents an imaging tool orthogonal to other luciferin-luciferase systems. We demonstrated the possibility of using the fungal luciferase as a new BRET donor by creating fused pairs with acceptor red fluorescent proteins, of which tdTomato provided the highest BRET efficiency. Using this new BRET system, we also designed a mTOR pathway specific rapamycin biosensor by integrating the FRB and FKBP12 protein dimerization system. We demonstrated the specificity and efficacy of the new fungal luciferase-based BRET combination for application in mammalian cell culture that will provide the unique opportunity to perform multiplexed BRET assessment in the future

    Systematic Comparison of Plant Promoters in <i>Nicotiana</i> spp. Expression Systems

    No full text
    We report a systematic comparison of 19 plant promoters and 20 promoter-terminator combinations in two expression systems: agroinfiltration in Nicotiana benthamiana leaves, and Nicotiana tabacum BY-2 plant cell packs. The set of promoters tested comprised those not present in previously published work, including several computationally predicted synthetic promoters validated here for the first time. The expression of EGFP driven by different promoters varied by more than two orders of magnitude and was largely consistent between two tested Nicotiana systems. We confirmed previous reports of significant modulation of expression by terminators, as well as synergistic effects of promoters and terminators. Additionally, we observed non-linear effects of gene dosage on expression level. The dataset presented here can inform the design of genetic constructs for plant engineering and transient expression assays

    Domain Truncation in Hispidin Synthase Orthologs from Non-Bioluminescent Fungi Does Not Lead to Hispidin Biosynthesis

    No full text
    Hispidin is a polyketide found in plants and fungi. In bioluminescent fungi, hispidin serves as a precursor of luciferin and is produced by hispidin synthases. Previous studies revealed that hispidin synthases differ in orthologous polyketide synthases from non-bioluminescent fungi by the absence of two domains with predicted ketoreductase and dehydratase activities. Here, we investigated the hypothesis that the loss of these domains in evolution led to the production of hispidin and the emergence of bioluminescence. We cloned three orthologous polyketide synthases from non-bioluminescent fungi, as well as their truncated variants, and assessed their ability to produce hispidin in a bioluminescence assay in yeast. Interestingly, expression of the full-length enzyme hsPKS resulted in dim luminescence, indicating that small amounts of hispidin are likely being produced as side products of the main reaction. Deletion of the ketoreductase and dehydratase domains resulted in no luminescence. Thus, domain truncation by itself does not appear to be a sufficient step for the emergence of efficient hispidin synthases from orthologous polyketide synthases. At the same time, the production of small amounts of hispidin or related compounds by full-length enzymes suggests that ancestral fungal species were well-positioned for the evolution of bioluminescence
    corecore