84 research outputs found
Faster PET reconstruction with a stochastic primal-dual hybrid gradient method
Abstract:
Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors-let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is therefore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG-a stochastic extension of PDHG-but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10 % of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting
PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets.
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) offers unique possibilities. In this paper we aim to exploit the high spatial resolution of MRI to enhance the reconstruction of simultaneously acquired PET data. We propose a new prior to incorporate structural side information into a maximum a posteriori reconstruction. The new prior combines the strengths of previously proposed priors for the same problem: it is very efficient in guiding the reconstruction at edges available from the side information and it reduces locally to edge-preserving total variation in the degenerate case when no structural information is available. In addition, this prior is segmentation-free, convex and no a priori assumptions are made on the correlation of edge directions of the PET and MRI images. We present results for a simulated brain phantom and for real data acquired by the Siemens Biograph mMR for a hardware phantom and a clinical scan. The results from simulations show that the new prior has a better trade-off between enhancing common anatomical boundaries and preserving unique features than several other priors. Moreover, it has a better mean absolute bias-to-mean standard deviation trade-off and yields reconstructions with superior relative l2-error and structural similarity index. These findings are underpinned by the real data results from a hardware phantom and a clinical patient confirming that the new prior is capable of promoting well-defined anatomical boundaries.This research was funded by the EPSRC (EP/K005278/1) and EP/H046410/1 and supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. M.J.E was supported by an IMPACT studentship funded jointly by Siemens and the UCL Faculty of Engineering Sciences. K.T. and D.A. are partially supported by the EPSRC grant EP/M022587/1.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/TMI.2016.254960
Evaluation of novel data-driven metrics of amyloid β deposition for longitudinal PET studies
PURPOSE: Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four data-driven amyloid PET metrics against conventional techniques, using a common set of criteria. METHODS: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data driven metrics computed were the amyloid load (Aβ load), the Aβ PET pathology accumulation index (Aβ index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, and sample size estimates to detect a 25% slowing in Aβ accumulation. RESULTS: All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the BPND. The associations with CL suggests that cross-sectional measures of CLNMF, Aβ index and Aβ load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aβ load compared to the CL. CONCLUSION: Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide comparable performance to more established quantification methods of Aβ PET tracer uptake. The CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted
Operationalizing the centiloid scale for [18F]florbetapir PET studies on PET/MRI
INTRODUCTION: The Centiloid scale aims to harmonize amyloid beta (Aβ) positron emission tomography (PET) measures across different analysis methods. As Centiloids were created using PET/computerized tomography (CT) data and are influenced by scanner differences, we investigated the Centiloid transformation with data from Insight 46 acquired with PET/magnetic resonanceimaging (MRI). METHODS: We transformed standardized uptake value ratios (SUVRs) from 432 florbetapir PET/MRI scans processed using whole cerebellum (WC) and white matter (WM) references, with and without partial volume correction. Gaussian-mixture-modelling-derived cutpoints for Aβ PET positivity were converted. RESULTS: The Centiloid cutpoint was 14.2 for WC SUVRs. The relationship between WM and WC uptake differed between the calibration and testing datasets, producing implausibly low WM-based Centiloids. Linear adjustment produced a WM-based cutpoint of 18.1. DISCUSSION: Transformation of PET/MRI florbetapir data to Centiloids is valid. However, further understanding of the effects of acquisition or biological factors on the transformation using a WM reference is needed
Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging
Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely on robust image registration between PET and MR images. We argue here that the precision, and hence the uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) levels. The effects of PET image reconstruction parameters, such as the use of attenuation and scatter corrections and different number of iterations, on the precision and accuracy of MR-PET registration were investigated. In addition, the performance of four software packages with their default settings for rigid inter-modality image registration were considered: NiftyReg, Vinci, FSL and SPM. Four distinct PET image distributions made of two early time frames (similar to cortical FDG) and two late frames using two amyloid PET dynamic acquisitions of one amyloid positive and one amyloid negative participants were investigated. For the investigated four PET frames, the biggest impact on the uncertainty was observed between registration software packages (up to 10-fold difference in precision) followed by the reconstruction parameters. On average, the lowest uncertainty for different PET frames and brain regions was observed with SPM and two iterations of fully quantitative image reconstruction. The observed uncertainty for the varying PET count-level (from 5% to 60%) was slightly lower than for the reconstruction parameters. We also observed that the registration uncertainty in quantitative PET analysis depends on amyloid status of the considered PET frames, with increased uncertainty (up to three times) when using post-reconstruction partial volume correction. This analysis is applicable for PET data obtained from either PET/MR or PET/CT scanners
Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls
With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer s disease (AD) patients and asymptomatic controls. In this work, the feasibility of multivariate analysis using Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) of Single Photon Emission Computed Tomography (SPECT) data is investigated. In order to obtain robust and reliable results, bootstrap resampling is applied and the robustness and classification accuracy of PCA/FDA are investigated. The robustness of the analysis is assessed by estimating the distribution of the angle between PCA/FDA discriminative vectors generated by bootstrap resampling, and the classification predictive accuracy is assessed using the .632 bootstrap estimator. The results indicate that PCA/FDA on SPECT data enables a robust differentiation between AD patients and asymptomatic controls based on three principal components, with a classification accuracy of 89%
- …