1,520 research outputs found

    Feeding behavior of crayfish snakes (Regina) : allometry, ontogeny and adaptations to an extremely specialized diet

    Get PDF
    Dietary specialists are often predicted to have specialized and stereotyped behaviors that increase the efficiency of foraging on their preferred prey, but which limit their ability to feed on nonpreferred prey. Although there is support for various aspects of this prediction, a number of studies suggest that specialists should not be characterized in such a simplified way. The purpose of this study was to describe the prey selectivity, prey handling behavior, and chemosensory behavior of crayfish snakes (Regina, Colubridae), which are extreme dietary specialists, and determine the effects of prey type, feeding experience and ontogeny. Museum specimens and field captured snakes, together with published data, were used to determine the effect of predator and prey size on prey selectivity in each species of Regina. Snakes were videotaped feeding on different prey to determine the effects of prey type and size on prey handling behavior, its efficiency and stereotypy. Finally, snakes born in captivity were raised on different diets to determine the effect of prey availability and prey type on the ontogeny of chemosensory behavior. This study confirmed the dietary specializations of Regina grahamii, R. septemvittata and R. alleni, and found that R. rigida, like R. alleni, includes odonate larvae in their diet as juveniles. Snake size and prey availability determines prey selection by R. alleni and R. rigida. This study also demonstrated that the relationships between dietary and behavioral specialization can be complex and depend on the characteristics of both the predator and its prey. For example, behavioral specializations in prey handling behavior were correlated with prey type rather than degree of dietary specialization. Hard crayfish required complex prey handling techniques, while soft crayfish did not. In R. alleni and R. rigida, such specialization appears to have permitted dietary expansion rather than restriction. Also, experience improved both prey handling efficiency and stereotypy irrespective of prey type consumed. As predicted the chemosensory response of each Regina species was greatest toward species characteristic prey. However, prey availability and type influenced these responses. In particular, R. septemvittata increased its chemosensory response toward hard crayfish (nonpreferred prey) when not permitted to eat soft crayfish

    Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell

    Get PDF
    Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimise the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids. This is an electronic version of an Article published in The Plant Journal, August 2004, Volume 39, pp. 655-667. Copyright 2004 Blackwell Publishing Ltd and The Society for Experimental Biology

    The making of a chloroplast

    Get PDF
    Since its endosymbiotic beginning, the chloroplast has become fully integrated into the biology of the host eukaryotic cell. The exchange of genetic information from the chloroplast to the nucleus has resulted in considerable co-ordination in the activities of these two organelles during all stages of plant development. Here, we give an overview of the mechanisms of light perception and the subsequent regulation of nuclear gene expression in the model plant Arabidopsis thaliana, and we cover the main events that take place when proplastids differentiate into chloroplasts. We also consider recent findings regarding signalling networks between the chloroplast and the nucleus during seedling development, and how these signals are modulated by light. In addition, we discuss the mechanisms through which chloroplasts develop in different cell types, namely cotyledons and the dimorphic chloroplasts of the C4 plant maize. Finally, we discuss recent data that suggest the specific regulation of the light-dependent phases of photosynthesis, providing a means to optimize photosynthesis to varying light regimes

    Anthropocene

    Get PDF
    The world today is undergoing rapid environmental change, driven by human population growth and economic development. This change encompasses such diverse phenomena as the clearing of rainforests for agriculture, the eutrophication of lakes and shallow seas by fertilizer run-off, depletion of fish stocks, acid rain, and global warming. These changes are cause for concern—or alarm—among some, and are regrettable if unavoidable side effects of economic growth for others

    Human bioturbation, and the subterranean landscape of the Anthropocene

    Get PDF
    Bioturbation by humans (‘anthroturbation’), comprising phenomena ranging from surface landscaping to boreholes that penetrate deep into the crust, is a phenomenon without precedent in Earth history, being orders of magnitude greater in scale than any preceding non-human type of bioturbation. These human phenomena range from simple individual structures to complex networks that range to several kilometres depth (compared with animal burrows that range from centimetres to a few metres in depth), while the extraction of material from underground can lead to topographic subsidence or collapse, with concomitant modification of the landscape. Geological transformations include selective removal of solid matter (e.g. solid hydrocarbons, metal ores), fluids (natural gas, liquid hydrocarbons, water), local replacement by other substances (solid waste, drilling mud), associated geochemical and mineralogical changes to redox conditions with perturbation of the water table and pH conditions and local shock-metamorphic envelopes with melt cores (in the case of underground nuclear tests). These transformations started in early/mid Holocene times, with the beginning of mining for flint and metals, but show notable inflections associated with the Industrial Revolution (ca 1800 CE) and with the ‘Great Acceleration’ at ∼1950 CE, the latter date being associated with the large-scale extension of this phenomenon from sub-land surface to sub-sea floor settings. Geometrically, these phenomena cross-cut earlier stratigraphy. Geologically, they can be regarded as a subsurface expression of the surface chronostratigraphic record of the Anthropocene. These subsurface phenomena have very considerable potential for long-term preservation

    The evaluation of new multi-material human soft tissue simulants for sports impact surrogates

    Get PDF
    Previous sports impact reconstructions have highlighted the inadequacies in current measures to evaluate the effectiveness of personal protective equipment (PPE) and emphasised the need for improved impact surrogates that provide a more biofidelic representation of human impact response. The skin, muscle and subcutaneous adipose tissues were considered to constitute the structures primarily governing the mechanical behaviour of the human body segment. A preceding study by Payne et al. (in press) investigated the formulation and characterisation of muscle tissue simulants. The present study investigates the development of bespoke blends of additive cure polydimethysiloxane (PDMS) silicones to represent both skin and adipose tissues using the same processes previously reported. These simulants were characterised mechanically through a range of strain rates and a range of hyperelastic and viscoelastic constitutive models were evaluated to describe their behaviour. To explore the worth of the silicone simulants, finite element (FE) models were developed using anthropometric parameters representative of the human thigh segment, derived from the Visible Human Project. The multi-material silicone construction was validated experimentally and compared with both organic tissue data from literature and commonly used single material simulants: Dow Corning Silastic 3480 series silicones and ballistics gelatin when subject to a representative sports specific knee impact. Superior biofidelic performance is reported for the PDMS silicone formulations and surrogate predictions

    New UK in-situ stress orientation for northern England and controls on borehole wall deformation identified using borehole imaging

    Get PDF
    The nascent development of a UK shale gas industry has highlighted the inadequacies of previous in-situ stress mapping which is fundamental to the efficacy and safety of potential fracturing operations. The limited number of stress inversions from earthquake focal plane mechanisms and overcoring measurements of in-situ stress in prospective areas increases the need for an up-to-date stress map. Borehole breakout results from 36 wells with newly interpreted borehole imaging data are presented. Across northern England these demonstrate a consistent maximum horizontal stress orientation (SHmax) orientation of 150.9° and circular standard deviation of 13.1°. These form a new and quality assured evidence base for both industry and its regulators. Widespread use of high-resolution borehole imaging tools has facilitated investigation of micro-scale relationships between stress and lithology, facilitating identification of breakouts as short as 25 cm. This is significantly shorter than those identified by older dual-caliper logging (typically 1-10+ m). Higher wall coverage (90%+ using the highest resolution tools) and decreasing pixel size (down to 4mm vertically by 2° of circumference) also facilitates identification of otherwise undetectable sub-centimetre width Drilling Induced Tensile Fractures (DIFs). Examination of borehole imaging from wells in North Yorkshire within the Carboniferous Pennine Coal Measures Group has showed that even though the stress field is uniform, complex micro-stress relationships exist. Different stress field indicators (SFI) are significantly affected by geology with differing failure responses from adjacent lithologies, highlighted by borehole imaging on sub-metre scales. Core-log-borehole imaging integration over intervals where both breakouts and DIFs have been identified allows accurate depth matching and thus allows a synthesis of failure for differing lithology and micro-structures under common in-situ conditions. Understanding these relationships requires detailed knowledge of the rock properties and how these affect deformation. Strength and brittleness of the facies are indicative of their likely failure-modes which are in turn controlled by their lithology, diagenesis and clay mineralisation, often highlighting dm-scale stress rotations around lithological boundaries. Breakouts are seen to concentrate within “seatearths” (palaeosol intervals directly under the coals), whereas intervals immediately above coals are marked disproportionately by DIFs. In-situ stress magnitude data information is not yet available for these wells, further work is required to quantify the geomechanical properties

    Advanced vehicle concepts systems and design analysis studies

    Get PDF
    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program

    Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50–120 km)

    Get PDF
    The coupled effects of kinetics, solar cycle flux variations and vertical transport on the distribution of long-lived hydrogen-carbon-oxygen compounds in the terrestrial mesosphere and lower thermosphere are studied using a one-dimensional aeronomy model. The calculations account for the important chemical reactions and use rocket measurements of the solar flux at solar minimum and maximum. Photodissociation rates appropriate for the mesosphere are determined with a spherical shell atmosphere formalism; detailed corrections for the O_2 Schumann-Runge bands and the temperature dependence of the CO_2 cross sections are used. Then an eddy diffusion profile is derived which gives agreement with the Aladdin 74 mass spectral measurements of atomic O, O_2, CO_2, and Ar in the lower thermosphere and observations of the O_3 minimum at ∼80 km. The 115 GHz CO radio emission line computed for the CO mixing ratio profile predicted with the new eddy diffusion profile compares well with recent observations of W. J. Wilson. Differences between the calculated CO mixing ratio profile and previous theoretical and observational determinations are discussed. Our derived eddy diffusion profile has a sudden decrease at 92 km which is necessary to produce the atomic O peak at 98 km that appears in the Aladdin 74 measurements. This stagnant region apparently is a recurrent or persistent feature of the upper atmosphere since an atomic O peak around 98 km has been seen by different techniques in different seasons over several years. Slow eddy diffusion in the lower thermosphere through the homopause was also the conclusion of earlier Ar/N_2 rocket measurements studies. The analytic approach of this paper could be used in the future to monitor variations in middle atmosphere dynamics, if regularly conducted simultaneous observations of various groups of species were available

    FAST TIME-OF-FLIGHT CAMERA LENS ASSEMBLY

    Get PDF
    A four-element lens assembly for implementation in a time-of-flight (ToF) camera for a head mounted display (HMD) device provides a wide field of view (FOV), high contrast and illumination at high resolution across the FOV over a relatively long working distance, a sufficiently small package/form factor so as to permit implementation in an HMD device, and relative insensitivity to ambient illumination other than that emitted by the ToF light sourc
    corecore