244 research outputs found

    Gibson\u27s Passion: A Case Study in Media Manipulation?

    Get PDF
    The question I have posed for myself - Is this a case of media manipulation? - is complicated by the fact that we are dealing here with two huge institutional nexuses, Hollywood and the Roman Catholic Church, that both have a longstanding and, one might say, radical commitment to managing any and all news about themselves. This means that, in each case, it is far from easy to establish the truth of what they are up to in order to determine the extent of the possible manipulation. Or, more charitably, one might say that both institutional nexuses are dedicated to the proposition that the truths of art and the truths of faith, respectively, may not always be best served by disclosing the truths about the people and institutions responsible for serving them up

    Galaxy Quenching from Cosmic Web Detachment

    Full text link
    We propose the Cosmic Web Detachment (CWD) model, a framework to interpret the star-formation history of galaxies in a cosmological context. The CWD model unifies several starvation mechanisms known to disrupt or stop star formation into one single physical framework. Galaxies begin accreting star-forming gas at early times via a network of primordial filaments, simply related to the pattern of density fluctuations in the initial conditions. But when shell-crossing occurs on intergalactic scales, this pattern is disrupted, and the galaxy detaches from its primordial filaments, ending the accretion of cold gas. We argue that CWD encompasses known external processes halting star formation, such as harassment, strangulation and starvation. On top of these external processes, internal feedback processes such as AGN contribute to stop in star formation as well. By explicitly pointing out the non-linear nature of CWD events we introduce a simple formalism to identify CWD events in N-body simulations. With it we reproduce and explain, in the context of CWD, several observations including downsizing, the cosmic star formation rate history, the galaxy mass-color diagram and the dependence of the fraction of red galaxies with mass and local density.Comment: 20 pages, accepted for publication in OJA. High-res version: http://skysrv.pha.jhu.edu/~miguel/Papers/CWD/ms.pd

    Religion in American Public Life (with transcript)

    Get PDF
    Sarah Gordon and Mark Silk look at how the U.S. has historically regulated religious institutions as well as accounted for an individual’s religious liberty

    Religion in American Public Life (with transcript)

    Get PDF
    Sarah Gordon and Mark Silk look at how the U.S. has historically regulated religious institutions as well as accounted for an individual’s religious liberty

    Forum: Electronic Media and the Study of American Religion

    Get PDF

    Comparing Simulations of AGN Feedback

    Full text link
    We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGN) to the simulations results in much better agreement between the methods. In this case both simulations display halo gas entropies of 100 keV cm^2, similar decrements in the star-formation rate, and a drop in the halo baryon content of roughly 30%. This is consistent with AGN growth being self-regulated, regardless of the numerical method. However, the simulations with AGN feedback continue to differ in aspects that are not self-regulated, such that in SPH a larger volume of gas is impacted by feedback, and the cluster still has a lower entropy central core.Comment: 22 pages, 20 figures, 3 tables, Accepted to ApJ, comments welcom

    Red Galaxy Growth and the Halo Occupation Distribution

    Full text link
    We have traced the past 7 Gyr of red galaxy stellar mass growth within dark matter halos. We have determined the halo occupation distribution, which describes how galaxies reside within dark matter halos, using the observed luminosity function and clustering of 40,696 0.2<z<1.0 red galaxies in Bootes. Half of 10^{11.9} Msun/h halos host a red central galaxy, and this fraction increases with increasing halo mass. We do not observe any evolution of the relationship between red galaxy stellar mass and host halo mass, although we expect both galaxy stellar masses and halo masses to evolve over cosmic time. We find that the stellar mass contained within the red population has doubled since z=1, with the stellar mass within red satellite galaxies tripling over this redshift range. In cluster mass halos most of the stellar mass resides within satellite galaxies and the intra-cluster light, with a minority of the stellar mass residing within central galaxies. The stellar masses of the most luminous red central galaxies are proportional to halo mass to the power of a third. We thus conclude that halo mergers do not always lead to rapid growth of central galaxies. While very massive halos often double in mass over the past 7 Gyr, the stellar masses of their central galaxies typically grow by only 30%.Comment: Accepted for publication in the ApJ. 34 pages, 22 Figures, 5 Table

    Correlations Between Central Massive Objects And Their Host Galaxies: From Bulgeless Spirals to Ellipticals

    Full text link
    Recent observations by Ferrarese et al. (2006) and Wehner et al. (2006) reveal that a majority of galaxies contain a central massive object (CMO), either a supermassive black hole (SMBH) or a compact stellar nucleus, regardless of the galaxy mass or morphological type, and that there is a tight relation between the masses of CMOs and those of the host galaxies. Several recent studies show that feedback from black holes can successfully explain the \msigma correlation in massive elliptical galaxies that contain SMBHs. However, puzzles remain in spirals or dwarf spheroids that do not appear to have black holes but instead harbor a compact central stellar cluster. Here we use three-dimensional, smoothed particle hydrodynamics simulations of isolated galaxies to study the formation and evolution of CMOs in bulgeless disk galaxies, and simulations of merging galaxies to study the transition of the CMO--host mass relation from late-type bulgeless spirals to early-type ellipticals. Our results suggest that the observed correlations may be established primarily by the depletion of gas in the central region by accretion and star-formation, and may hold for all galaxy types. A systematic search for CMOs in the nuclei of bulgeless disk galaxies would offer a test of this conclusion. (Abridged)Comment: 11 pages, 8 figures, accepted to Ap
    corecore