169 research outputs found

    A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    Get PDF
    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results

    Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Get PDF
    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance

    Long-term safety and efficacy of antithymocyte globulin induction: Use of integrated national registry data to achieve ten-year follow-up of 10-10 Study participants

    Get PDF
    BACKGROUND: Rabbit antithymocyte globulin (rATG, Thymoglobulin®) is the most common induction immunosuppression therapy in kidney transplantation. We applied a database integration strategy to capture and compare long-term (10-year) outcome data for US participants in a clinical trial of rATG versus FDA-approved basiliximab. METHODS: Records for US participants in an international, 1-year, randomized clinical trial comparing rATG and basiliximab induction in deceased donor kidney transplantation were integrated with records from the US national Organ Procurement and Transplantation (OPTN) registry using center, transplant dates, recipient sex, and birthdates. The OPTN captures center-reported acute rejection, graft failure, death, and cancer events, and incorporates comprehensive death records from the Social Security Death Master File. Ten-year outcomes according to randomized induction regimen were compared by Kaplan–Meier analysis (two-sided P). Non-inferiority of rATG was assessed using a one-tailed equivalence test (a-priori equivalence margins of 0–10 %). RESULTS: Of 183 US trial participants, 89 % (n = 163) matched OPTN records exactly; the remainder were matched by extending agreement windows for transplant and birthdates. Matches were validated by donor and recipient blood types. By Kaplan–Meier analysis, 10 years post-transplant, freedom from acute rejection, graft failure, or death was 32.6 % and 24.0 % in the rATG and basiliximab arms, respectively (P = 0.09). The incidence of acute rejection with rATG versus basiliximab induction was 21.0 % versus 32.8 % (P = 0.07). Patient survival (52.5 % versus 52.2 %, P = 0.92) and graft survival (34.3 % versus 30.9 %, P = 0.56) rates were numerically and statistically similar for both arms. Comparison of the composite outcome meets non-inferiority criteria even with a 0 % equivalence margin (one-sided P = 0.04). With a 10 % equivalence margin, the odds that rATG is no worse than basiliximab for 10-year risk of the composite endpoint are >99 %. CONCLUSIONS: Ten years post-transplant, rATG induction has comparable efficacy and safety to FDA-approved basiliximab. Integration of clinical trial records with national registry data can enable long-term monitoring of trial participants in transplantation, circumventing logistical and cost barriers of extended follow-up. TRIAL REGISTRATION: ClinicalTrials.gov NCT00235300 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13063-015-0891-y) contains supplementary material, which is available to authorized users

    Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation

    Get PDF
    Background: The Sox genes, a family of transcription factors characterized by the presence of a high mobility group (HMG) box domain, are among the central groups of developmental regulators in the animal kingdom. They are indispensable in progenitor cell fate determination, and various Sox family members are involved in managing the critical balance between stem cells and differentiating cells. There are 20 mammalian Sox genes that are divided into five major groups (B, C, D, E, and F). True Sox genes have been identified in all animal lineages but not outside Metazoa, indicating that this gene family arose at the origin of the animals. Whole-genome sequencing of the lobate ctenophore Mnemiopsis leidyi allowed us to examine the full complement and expression of the Sox gene family in this early-branching animal lineage. Results: Our phylogenetic analyses of the Sox gene family were generally in agreement with previous studies and placed five of the six Mnemiopsis Sox genes into one of the major Sox groups: SoxB (MleSox1), SoxC (MleSox2), SoxE (MleSox3, MleSox4), and SoxF (MleSox5), with one unclassified gene (MleSox6). We investigated the expression of five out of six Mnemiopsis Sox genes during early development. Expression patterns determined through in situ hybridization generally revealed spatially restricted Sox expression patterns in somatic cells within zones of cell proliferation, as determined by EdU staining. These zones were located in the apical sense organ, upper tentacle bulbs, and developing comb rows in Mnemiopsis, and coincide with similar zones identified in the cydippid ctenophore Pleurobrachia. Conclusions: Our results are consistent with the established role of multiple Sox genes in the maintenance of stem cell pools. Both similarities and differences in juvenile cydippid stage expression patterns between Mnemiopsis Sox genes and their orthologs from Pleurobrachia highlight the importance of using multiple species to characterize the evolution of development within a given phylum. In light of recent phylogenetic evidence that Ctenophora is the earliest-branching animal lineage, our results are consistent with the hypothesis that the ancient primary function of Sox family genes was to regulate the maintenance of stem cells and function in cell fate determination

    The economic implications of HLA matching in cadaveric renal transplantation.

    Get PDF
    Abstract Background: The potential economic effects of the allocation of cadaveric kidneys on the basis of tissue-matching criteria are controversial. We analyzed the economic costs associated with the transplantation of cadaveric kidneys with various numbers of HLA mismatches and examined the potential economic benefits of a local, as compared with a national, system designed to minimize HLA mismatches between donor and recipient in first cadaveric renal transplantations. Methods: All data were supplied by the U.S. Renal Data System. Data on all payments made by Medicare from 1991 through 1997 for the care of recipients of a first cadaveric renal transplant were analyzed according to the number of HLA-A, B, and DR mismatches between donor and recipient and the duration of cold ischemia before transplantation. Results: Average Medicare payments for renal-transplant recipients in the three years after transplantation increased from 60,436perpatientforfullyHLAmatchedkidneys(thosewithnoHLAA,B,orDRmismatches)to60,436 per patient for fully HLA-matched kidneys (those with no HLA-A, B, or DR mismatches) to 80,807 for kidneys with six HLA mismatches between donor and recipient, a difference of 34 percent (P\u3c0.001). By three years after transplantation, the average Medicare payments were 64,119fortransplantationsofkidneyswithlessthan12hoursofcoldischemiatimeand64,119 for transplantations of kidneys with less than 12 hours of cold-ischemia time and 74,997 for those with more than 36 hours (P\u3c0.001). In simulations, the assignment of cadaveric kidneys to recipients by a method that minimized HLA mismatching within a local geographic area (i.e., within one of the approximately 50 organ-procurement organizations, which cover widely varying geographic areas) produced the largest cost savings ($4,290 per patient over a period of three years) and the largest improvements in the graft-survival rate (2.3 percent) when the potential costs of longer cold-ischemia time were considered. Conclusions: Transplantation of better-matched cadaveric kidneys could have substantial economic advantages. In our simulations, HLA-based allocation of kidneys at the local level produced the largest estimated cost savings, when the duration of cold ischemia was taken into account. No additional savings were estimated to result from a national allocation program, because the additional costs of longer cold-ischemia time were greater than the advantages of optimizing HLA matching

    Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation

    Get PDF
    Background: The Sox genes, a family of transcription factors characterized by the presence of a high mobility group (HMG) box domain, are among the central groups of developmental regulators in the animal kingdom. They are indispensable in progenitor cell fate determination, and various Sox family members are involved in managing the critical balance between stem cells and differentiating cells. There are 20 mammalian Sox genes that are divided into five major groups (B, C, D, E, and F). True Sox genes have been identified in all animal lineages but not outside Metazoa, indicating that this gene family arose at the origin of the animals. Whole-genome sequencing of the lobate ctenophore Mnemiopsis leidyi allowed us to examine the full complement and expression of the Sox gene family in this early-branching animal lineage. Results: Our phylogenetic analyses of the Sox gene family were generally in agreement with previous studies and placed five of the six Mnemiopsis Sox genes into one of the major Sox groups: SoxB (MleSox1), SoxC (MleSox2), SoxE (MleSox3, MleSox4), and SoxF (MleSox5), with one unclassified gene (MleSox6). We investigated the expression of five out of six Mnemiopsis Sox genes during early development. Expression patterns determined through in situ hybridization generally revealed spatially restricted Sox expression patterns in somatic cells within zones of cell proliferation, as determined by EdU staining. These zones were located in the apical sense organ, upper tentacle bulbs, and developing comb rows in Mnemiopsis, and coincide with similar zones identified in the cydippid ctenophore Pleurobrachia. Conclusions: Our results are consistent with the established role of multiple Sox genes in the maintenance of stem cell pools. Both similarities and differences in juvenile cydippid stage expression patterns between Mnemiopsis Sox genes and their orthologs from Pleurobrachia highlight the importance of using multiple species to characterize the evolution of development within a given phylum. In light of recent phylogenetic evidence that Ctenophora is the earliest-branching animal lineage, our results are consistent with the hypothesis that the ancient primary function of Sox family genes was to regulate the maintenance of stem cells and function in cell fate determination.publishedVersionPeer Reviewe

    Racial variation in medical outcomes among living kidney donors

    Get PDF
    BACKGROUND: Data regarding health outcomes among living kidney donors are lacking, especially among nonwhite persons. METHODS: We linked identifiers from the Organ Procurement and Transplantation Network (OPTN) with administrative data of a private U.S. health insurer and performed a retrospective study of 4650 persons who had been living kidney donors from October 1987 through July 2007 and who had post-donation nephrectomy benefits with this insurer at some point from 2000 through 2007. We ascertained post-nephrectomy medical diagnoses and conditions requiring medical treatment from billing claims. Cox regression analyses with left and right censoring to account for observed periods of insurance benefits were used to estimate absolute prevalence and prevalence ratios for diagnoses after nephrectomy. We then compared prevalence patterns with those in the 2005–2006 National Health and Nutrition Examination Survey (NHANES) for the general population. RESULTS: Among the donors, 76.3% were white, 13.1% black, 8.2% Hispanic, and 2.4% another race or ethnic group. The median time from donation to the end of insurance benefits was 7.7 years. After kidney donation, black donors, as compared with white donors, had an increased risk of hypertension (adjusted hazard ratio, 1.52; 95% confidence interval [CI], 1.23 to 1.88), diabetes mellitus requiring drug therapy (adjusted hazard ratio, 2.31; 95% CI, 1.33 to 3.98), and chronic kidney disease (adjusted hazard ratio, 2.32; 95% CI, 1.48 to 3.62); findings were similar for Hispanic donors. The absolute prevalence of diabetes among all donors did not exceed that in the general population, but the prevalence of hypertension exceeded NHANES estimates in some subgroups. End-stage renal disease was identified in less than 1% of donors but was more common among black donors than among white donors. CONCLUSIONS: As in the general U.S. population, racial disparities in medical conditions occur among living kidney donors. Increased attention to health outcomes among demographically diverse kidney donors is needed. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others.
    corecore