31 research outputs found

    Thermodynamic Model for Energy-Constrained Open-System Evolution of Crustal Magma Bodies Undergoing Simultaneous Recharge, Assimilation and Crystallization: the Magma Chamber Simulator

    Get PDF
    The Magma Chamber Simulator quantifies the impact of simultaneous recharge, assimilation and crystallization through mass and enthalpy balance in a multicomponent–multiphase (melt + solids ± fluid) composite system. As a rigorous thermodynamic model, the Magma Chamber Simulator computes phase equilibria and geochemical evolution self-consistently in resident magma, recharge magma and wallrock, all of which are connected by specified thermodynamic boundaries, to model an evolving open-system magma body. In a simulation, magma cools from its liquidus temperature, and crystals ± fluid are incrementally fractionated to a separate cumulate reservoir. Enthalpy from cooling, crystallization, and possible magma recharge heats wallrock from its initial subsolidus temperature. Assimilation begins when a critical wallrock melt volume fraction (0·04–0·12) in a range consistent with the rheology of partially molten rock systems is achieved. The mass of melt above this limit is removed from the wallrock and homogenized with the magma body melt. New equilibrium states for magma and wallrock are calculated that reflect conservation of total mass, mass of each element and enthalpy. Magma cooling and crystallization, addition of recharge magma and anatectic melt to the magma body (where appropriate), and heating and partial melting of wallrock continue until magma and wallrock reach thermal equilibrium. For each simulation step, mass and energy balance and thermodynamic assessment of phase relations provide major and trace element concentrations, isotopic characteristics, masses, and thermal constraints for all phases (melt + solids ± fluid) in the composite system. Model input includes initial compositional, thermal and mass information relevant to each subsystem, as well as solid–melt and solid–fluid partition coefficients for all phases. Magma Chamber Simulator results of an assimilation–fractional crystallization (AFC) scenario in which dioritic wallrock at 0·1 GPa contaminates high-alumina basalt are compared with results in which no assimilation occurs [fractional crystallization only (FC-only)]. Key comparisons underscore the need for multicomponent–multiphase energy-constrained thermodynamic modeling of open systems, as follows. (1) Partial melting of dioritic wallrock yields cooler silicic melt that contaminates hotter magma. Magma responds by cooling, but a pulse of crystallization, possibly expected based on thermal arguments, does not occur because assimilation suppresses crystallization by modifying the topology of multicomponent phase saturation surfaces. As a consequence, contaminated magma composition and crystallizing solids are distinct compared with the FC-only case. (2) At similar stages of evolution, contaminated melt is more voluminous (∌3·5×) than melt formed by FC-only. (3) In AFC, some trace element concentrations are lower than their FC-only counterparts at the same stage of evolution. Elements that typically behave incompatibly in mafic and intermediate magmas (e.g. La, Nd, Ba) may not be ‘enriched’ by crustal contamination, and the most ‘crustal’ isotope signatures may not correlate with the highest concentrations of such elements. (4) The proportion of an element contributed by anatectic melt to resident magma is typically different for each element, and thus the extent of mass exchange between crust and magma should be quantified using total mass rather than the mass of a single element. Based on these sometimes unexpected results, it can be argued that progress in quantifying the origin and evolution of open magmatic systems and documenting how mantle-derived magmas and the crust interact rely not only on improvements in instrumentation and generation of larger datasets, but also on continued development of computational tools that couple thermodynamic assessment of phase equilibria in multicomponent systems with energy and mass conservation

    Submarine Fernandina : magmatism at the leading edge of the Galapagos hot spot

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q12007, doi:10.1029/2006GC001290.New multibeam and side-scan sonar surveys of Fernandina volcano and the geochemistry of lavas provide clues to the structural and magmatic development of GalĂĄpagos volcanoes. Submarine Fernandina has three well-developed rift zones, whereas the subaerial edifice has circumferential fissures associated with a large summit caldera and diffuse radial fissures on the lower slopes. Rift zone development is controlled by changes in deviatoric stresses with increasing distance from the caldera. Large lava flows are present on the gently sloping and deep seafloor west of Fernandina. Fernandina's submarine lavas are petrographically more diverse than the subaerial suite and include picrites. Most submarine glasses are similar in composition to aphyric subaerially erupted lavas, however. These rocks are termed the “normal” series and are believed to result from cooling and crystallization in the subcaldera magma system, which buffers the magmas both thermally and chemically. These normal-series magmas are extruded laterally through the flanks of the volcano, where they scavenge and disaggregate olivine-gabbro mush to produce picritic lavas. A suite of lavas recovered from the terminus of the SW submarine rift and terraces to the south comprises evolved basalts and icelandites with MgO = 3.1 to 5.0 wt.%. This “evolved series” is believed to form by fractional crystallization at 3 to 5 kb, involving extensive crystallization of clinopyroxene and titanomagnetite in addition to plagioclase. “High-K” lavas were recovered from the southwest rift and are attributed to hybridization between normal-series basalt and evolved-series magma. The geochemical and structural findings are used to develop an evolutionary model for the construction of the GalĂĄpagos Platform and better understand the petrogenesis of the erupted lavas. The earliest stage is represented by the deep-water lava flows, which over time construct a broad submarine platform. The deep-water lavas originate from the subcaldera plumbing system of the adjacent volcano. After construction of the platform, eruptions focus to a point source, building an island with rift zones extending away from the adjacent, buttressing volcanoes. Most rift zone magmas intrude laterally from the subcaldera magma chamber, although a few evolve by crystallization in the upper mantle and deep crust.This work was supported by the National Science Foundation grants OCE0002818 and EAR0207605 (D.G.), OCE0002461 (D.J.F. and M.K.), OCE9811504 (D.J.F. and M.R.P.), and EAR0207425 (K.H.) and WHOI postdoctoral support for Soule

    Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Get PDF
    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∌760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies

    Algorithmic modifications extending MELTS to calculate subsolidus phase relations

    No full text
    Algorithmic modifications to the MELTS software package are presented in order that calculations of heterogeneous phase equilibria can be performed in the subsolidus. Methods are presented for: (1) selecting an "initial guess assemblage" that satisfies the bulk composition constraints; (2) detecting saturation of new phases (including liquid) in an assemblage; (3) adding and removing phases from the assemblage without adjusting the system bulk composition; and (4) constraining the assemblage to a fixed f_(O2). These methods have O2 been added to MELTS, allowing it to calculate heterogeneous phase equilibria with or without liquid, closed or open to O, and with fixed intensive variables (P,T), (P,S), (P,H), or (V,T). Applications include fractional melting calculations, metamorphic phase equilibria, and geophysical models of subsolidus regions of the Earth

    The molar volume of FeO–MgO–Fe_2O_3–Cr_2O_3–Al_2O_3–TiO_2 spinels

    No full text
    We define and calibrate a new model of molar volume as a function of pressure, temperature, ordering state, and composition for spinels in the supersystem (Mg, Fe^(2+))(Al, Cr, Fe^(3+))_2O_4 − (Mg, Fe^(2+))_2TiO_4. We use 832 X-ray and neutron diffraction measurements performed on spinels at ambient and in situ high-P, T conditions to calibrate end-member equations of state and an excess volume model for this system. The effect on molar volume of cation ordering over the octahedral and tetrahedral sites is captured with linear dependence on Mg^(2+), Al^(3+), and Fe^(3+) site occupancy terms. We allow standard-state volumes and coefficients of thermal expansion of the end members to vary within their uncertainties during extraction of the mixing properties, in order to achieve the best fit. Published equations of state of the various spinel end members are analyzed to obtain optimal values of the bulk modulus and its pressure derivative, for each explicit end member. For any spinel composition in the supersystem, the model molar volume is obtained by adding excess volume and cation order-dependent terms to a linear combination of the five end-member volumes, estimated at pressure and temperature using the high-T Vinet equation of state. The preferred model has a total of 9 excess volume and order-dependent parameters and fits nearly all experiments to within 0.02 J/bar/mol, or better than 0.5 % in volume. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure
    corecore