4,112 research outputs found

    Evaluation of a ln tan integral arising in quantum field theory

    Full text link
    We analytically evaluate a dilogarithmic integral that is prototypical of volumes of ideal tetrahedra in hyperbolic geometry. We additionally obtain new representations of the Clausen function Cl_2 and the Catalan constant G=Cl_2(\pi/2), as well as new relations between sine and Clausen function values.Comment: 24 pages, no figure

    In Vivo Bio-imaging Using Chlorotoxin-based Conjugates.

    Get PDF
    Surgical resection remains the primary component of cancer therapy. The precision required to successfully separate cancer tissue from normal tissue relies heavily on the surgeon's ability to delineate the tumor margins. Despite recent advances in surgical guidance and monitoring systems, intra-operative identification of these margins remains imprecise and directly influences patient prognosis. If the surgeon had improved tools to distinguish these margins, tumor progression and unacceptable morbidity could be avoided. In this article, we review the history of chlorotoxin and its tumor specificity and discuss the research currently being generated to target optical imaging agents to cancer tissue

    Atmospheric neutron measurements with the SONTRAC science model

    Get PDF
    –The SOlar Neutron TRACking (SONTRAC) telescope was originally developed to measure the energy spectrum and incident direction of neutrons produced in solar flares, in the energy range 20 - 250 MeV. While developed primarily for solar physics, the SONTRAC detector may be employed in virtually any application requiring both energy measurement and imaging capabilities. The SONTRAC Science Model (SM) is presently being operated at the University of New Hampshire (UNH) as a ground-based instrument to investigate the energy spectrum, zenith and azimuth angle dependence of the cosmic-ray induced sea-level atmospheric neutron flux. SONTRAC measurements are based on the non-relativistic double scatter of neutrons off ambient protons within a block of scintillating fibers. Using the n-p elastic double-scatter technique, it is possible to uniquely determine the neutron’s energy and direction on an event-by-event basis. The 3D SM consists of a cube of orthogonal plastic scintillating fiber layers with 5 cm sides, read out by two CCD cameras. Two orthogonal imaging chains allow full 3D reconstruction of scattered proton tracks

    Metabolic Heat: A New Way of Looking at How Controlled Atmospheres Kill Insects

    Get PDF
    The use of calorimetry as a tool to understand the effects of controlled atmospheres (CA) on insects is briefly reviewed. A variety of data are presented to illustrate the various types of information that calorimetry can make available to researchers. The use of a calorimeter connected to a mass spectrometer to determine the occurrence of anaerobic respiration is described and reported. We conclude that calorimetry is a useful tool to simplify the experimental options when developing new insecticidal CA treatments. It can also be used for development of other treatments such as fumigants

    Aluminium-Free Glass Polyalkenoate Cements: Ion Release and in Vitro Antibacterial Efficacy

    Get PDF
    Glass polyalkenoate cements (GPCs) have exhibited potential as bone cements. This study investigates the effect of substituting TiO2 for SiO2 in the glass phase and the subsequent effect on cement rheology, mechanical properties, ion release and antibacterial properties. Glass characterization revealed a reduction in glass transition temperature (Tg) from 685 to 669 C with the addition of 6 mol % TiO2 (AT-2). Magic angle spinning nuclear magnetic resonance (MAS-NMR) revealed a shift from -81 ppm to -76pmm when comparing a Control glass to AT-2, indicating de-polymerization of the Si network. The incorporation of TiO2 also increased the working time (Tw) from 19 to 61 s and setting time (Ts) from 70 to 427 s. The maximum compressive strength (σc) increased from 64 to 85 MPa. Ion release studies determined that the addition of Ti to the glass reduced the release of zinc, calcium and strontium ions, with low concentrations of titanium being released. Antibacterial testing in E. coli resulted in greater bactericidal effects when tested in aqueous broth for both titanium containing cements. © Springer Science+Business Media New York 2013

    Real-time deterministic power flow control through dispatch of distributed energy resources

    Get PDF
    Integration of intermittent renewable resources and mass electrification of heat and transport into the existing electricity network, with limited network asset reinforcement requires incorporation of intelligence in form of active management of flexible resources within different sections of the distribution network. A hierarchical multi-level control framework is proposed for this purpose which incorporates the appropriate optimisation and control strategies at different levels. In particular a novel deterministic control algorithm for controlling power flows at the community cell level has been developed and presented in this paper. This algorithm incorporates robustness to communication and device failure and is easily expandable to an arbitrary number of devices. The simulation results presented in this paper show that the effectiveness of the proposed control technique depends on distributed energy resources flexibility and storage capacity

    Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin

    Get PDF
    This work was funded by the Neonatal Unit Endowment Fund, Aberdeen Maternity Hospital. RH is funded by a career researcher fellowship from NHS Research Scotland. SG was funded by the MRC Flagship PhD programme. We are grateful for the support of Dr Phil Cash and Aberdeen Proteomics, at University of Aberdeen, in completing this project. Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24811-3.Peer reviewedPublisher PD

    Probability Density of the Multipole Vectors for a Gaussian Cosmic Microwave Background

    Full text link
    We review Maxwell's multipole vectors, and elucidate some of their mathematical properties, with emphasis on the application of this tool to the cosmic microwave background (CMB). In particular, for a completely random function on the sphere (corresponding to the statistically isotropic Gaussian model of the CMB), we derive the full probability density function of the multipole vectors. This function is used to analyze the internal configurations of the third-year Wilkinson Microwave Anisotropy Probe quadrupole and octopole, and we show the observations are consistent with the Gaussian prediction. A particular aspect is the planarity of the octopole, which we find not to be anomalous.Comment: 12 pages, 7 figures, MNRAS styl
    corecore