77 research outputs found

    Ioffe Time in Double Logarithmic Approximation

    Full text link
    We analyze the light cone (Ioffe) time structure of the gluon distribution function in the double logarithmic approximation. We show that due to QCD evolution Ioffe equation is modified. The characteristic light cone time of the gluons does not increase as fast with increasing energy (decreasing Bjorken x) as predicted by the parton distributions exhibiting Bjorken scaling due to the increase of the transverse momenta of the gluons in the DGLAP ladder.Comment: 13 pages, 1 figur

    On Landauer vs. Boltzmann and Full Band vs. Effective Mass Evaluation of Thermoelectric Transport Coefficients

    Get PDF
    The Landauer approach to diffusive transport is mathematically related to the solution of the Boltzmann transport equation, and expressions for the thermoelectric parameters in both formalisms are presented. Quantum mechanical and semiclassical techniques to obtain from a full description of the bandstructure, E(k), the number of conducting channels in the Landauer approach or the transport distribution in the Boltzmann solution are developed and compared. Thermoelectric transport coefficients are evaluated from an atomistic level, full band description of a crystal. Several example calculations for representative bulk materials are presented, and the full band results are related to the more common effective mass formalism. Finally, given a full E(k) for a crystal, a procedure to extract an accurate, effective mass level description is presented.Comment: 33 pages, 8 figure

    Pathologic Findings at Risk-Reducing Salpingo-Oophorectomy: Primary Results From Gynecologic Oncology Group Trial GOG-0199

    Get PDF
    Risk-reducing salpingo-oophorectomy (RRSO) lowers mortality from ovarian/tubal and breast cancers among BRCA1/2 mutation carriers. Uncertainties persist regarding potential benefits of RRSO among high-risk noncarriers, optimal surgical age, and anatomic origin of clinically occult cancers detected at surgery. To address these topics, we analyzed surgical treatment arm results from Gynecologic Oncology Group Protocol-0199 (GOG-0199), the National Ovarian Cancer Prevention and Early Detection Study

    Suppressing quantum errors by scaling a surface code logical qubit

    Full text link
    Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle (2.914%±0.016%2.914\%\pm 0.016\% compared to 3.028%±0.023%3.028\%\pm 0.023\%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7×1061.7\times10^{-6} logical error per round floor set by a single high-energy event (1.6×1071.6\times10^{-7} when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.Comment: Main text: 6 pages, 4 figures. v2: Update author list, references, Fig. S12, Table I

    Non-Abelian braiding of graph vertices in a superconducting processor

    Full text link
    Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion

    Full text link

    Adaptation in Coding by Large Populations of Neurons in the Retina

    No full text
    A comprehensive theory of neural computation requires an understanding of the statistical properties of the neural population code. The focus of this work is the experimental study and theoretical analysis of the statistical properties of neural activity in the tiger salamander retina. This is an accessible yet complex system, for which we control the visual input and record from a substantial portion - greater than a half - of the ganglion cell population generating the spiking output. Our experiments probe adaptation of the retina to visual statistics: a central feature of sensory systems which have to adjust their limited dynamic range to a far larger space of possible inputs. In Chapter 1 we place our work in context with a brief overview of the relevant background. In Chapter 2 we describe the experimental methodology of recording from 100+ ganglion cells in the tiger salamander retina. In Chapter 3 we first present the measurements of adaptation of individual cells to changes in stimulation statistics and then investigate whether pairwise correlations in fluctuations of ganglion cell activity change across different stimulation conditions. We then transition to a study of the population-level probability distribution of the retinal response captured with maximum-entropy models. Convergence of the model inference is presented in Chapter 4. In Chapter 5 we first test the empirical presence of a phase transition in such models fitting the retinal response to different experimental conditions, and then proceed to develop other characterizations which are sensitive to complexity in the interaction matrix. This includes an analysis of the dynamics of sampling at finite temperature, which demonstrates a range of subtle attractor-like properties in the energy landscape. These are largely conserved when ambient illumination is varied 1000-fold, a result not necessarily apparent from the measured low-order statistics of the distribution. Our results form a consistent picture which is discussed at the end of Chapter 5. We conclude with a few future directions related to this thesis

    The Structured `Low Temperature' Phase of the Retinal Population Code

    No full text
    The README.txt file within the .zip file contains a detailed description of this dataset's contentRecent advances in experimental techniques have allowed the simultaneous recordings of populations of hundreds of neurons, fostering a debate about the nature of the collective structure of population neural activity. Much of this debate has focused on the empirical findings of a phase transition in the parameter space of maximum entropy models describing the measured neural probability distributions, interpreting this phase transition to indicate a critical tuning of the neural code. Here, we instead focus on the possibility that this is a first-order phase transition which provides evidence that the real neural population is in a `structured', collective state. We show that this collective state is robust to changes in stimulus ensemble and adaptive state. We find that the pattern of pairwise correlations between neurons has a strength that is well within the strongly correlated regime and does not require fine tuning, suggesting that this state is generic for populations of 100+ neurons. We find a clear correspondence between the emergence of a phase transition, and the emergence of attractor-like structure in the inferred energy landscape. A collective state in the neural population, in which neural activity patterns naturally form clusters, provides a consistent interpretation for our results
    corecore