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On Landauer versus Boltzmann and full band versus effective mass
evaluation of thermoelectric transport coefficients

Changwook Jeong,a� Raseong Kim, Mathieu Luisier, Supriyo Datta, and Mark Lundstrom
Network for Computational Nanotechnology, Birck Nanotechnology Center, Purdue University,
West Lafayette, Indiana 47907, USA

�Received 5 October 2009; accepted 12 December 2009; published online 26 January 2010�

Using a full band description of electronic bandstructure, the Landauer approach to diffusive
transport is mathematically related to the solution of the Boltzmann transport equation, and
expressions for the thermoelectric parameters in both formalisms are presented. Quantum
mechanical and semiclassical techniques to obtain from a full description of the bandstructure, E�k�,
the density of modes in the Landauer approach or the transport distribution in the Boltzmann
solution are compared and thermoelectric transport coefficients are evaluated. Several example
calculations for representative bulk materials are presented and the full band results are related to the
more common effective mass formalism. Finally, given a full E�k� for a crystal, a procedure to
extract an accurate, effective mass level description is presented. © 2010 American Institute of
Physics. �doi:10.1063/1.3291120�

I. INTRODUCTION

Much experimental and theoretical effort has been di-
rected at improving the thermoelectric �TE� figure of merit,
ZT=S2GT /K, where T is the temperature, S is the Seebeck
coefficient, G is the electrical conductance, and K is the ther-
mal conductance, which is the sum of the electronic contri-
bution, Ke, and the lattice thermal conductance, Kl. Careful
tradeoffs are needed to obtain high ZT. Recent experimental
reports of high ZT1–8 are attributed to suppressing the lattice
thermal conductivity, and now the question of whether the
electronic performance can be enhanced is being asked.9–11

New materials,1,12–15 new structures �e.g., nanowires,16–26

quantum wells,2,27,28 superlattices,10,11,17,29–36 and
nanocomposites3,4,37–39�, and strain engineering,29,40–42 which
has been so successful for enhancing the electronic perfor-
mance of nanotransistors, are all being explored. To address
these opportunities, TE coefficients must be related to an
accurate description of the electronic structure of the mate-
rial.

TE parameters are usually evaluated by solving the Bolt-
zmann transport equation �BTE�.43 For low temperature TEs
in mesoscopic structures, the Landauer approach is com-
monly used.44,45 The Landauer approach applies to high tem-
perature diffusive samples as well, and it provides an alter-
native formulation that can be insightful.46 One objectives
for this paper are to discuss the mathematical relation be-
tween the Landauer and Boltzmann approaches when using a
full description of the electronic bandstructure and to relate
the full band calculations to effective mass level descriptions

In both the Landauer and Boltzmann approaches the TE
parameters are related to the electronic structure of the ma-
terial. The effective mass approach is widely-used to analyze
experiments and to design devices. For more complex mate-
rials, full band treatments �ab initio or empirical tight bind-
ing� have been used.12,47–56 It is still not clear, however, ex-

actly how full band treatments relate to effective mass level
treatments—especially for complex bandstructures. Another
objective of this paper is to discuss the evaluation of TE
parameters from a full band perspective and to show that the
results are easily related to an effective mass level descrip-
tion.

The paper is organized as follows. In Sec. II, we present
a brief summary of the Landauer formalism and relate it to
the more common approach that begins with the BTE. We
also present two methods for evaluating the transport distri-
bution in the Landauer approach from a full band description
of the electronic structure. In Sec. III, tight binding simula-
tion results are presented for the conduction bands �CBs� and
valence bands �VBs� of germanium �Ge�, gallium arsenide
�GaAs�, and bismuth telluride �Bi2Te3�. The results are dis-
cussed within the Landauer framework in Sec. IV, as is the
relation of the rigorous approach to the effective mass ap-
proach. Our conclusions are summarized in Sec. V.

II. APPROACH

The Landauer formalism in the linear response regime
gives the electrical conductance, Seebeck coefficient, and the
thermal conductance for zero electric current as57,58

G = �2q2/h�I0 �1/�� , �1�

S = �kB/�− q��
I1

I0
�V/K� , �2�

Ke = �TL2kB
2 /h��I2 − I1

2/I0� �W/K� , �3�

where

Ij = �
−�

+� �E − EF

kBTL
	 j

T̄�E��−
� f0

�E
	dE , �4�
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T̄�E� = T�E�M�E� , �5�

being the transmission,45 and M�E� the density of modes
�DOM�.59 For a conductor of length, L, and mean-free-path
for backscattering, 

��E���,

T�E� = 

��E���/L �6�

in the diffusive limit.59 For some common scattering mecha-
nisms, 

��E��� can be expressed in power law form as


��E���=�0�E /kBT�r, where �0 is a constant, E is the kinetic
energy, and r is a characteristic exponent describing a spe-
cific scattering process.

TE transport coefficients are more commonly obtained
by solving the Boltzmann equation in the relaxation time
approximation and expressed in terms of an integral like Eq.
�4� with the transmission replaced by the so-called transport
distribution according to46

��E� =
L2

h
M�E�T�E� =

L

h
M�E�

��� . �7�

A solution of the Boltzmann equation gives43

��E� = �
k�

��x
2����E − Ek� , �8�

where � is the momentum relaxation time. Equation �7� re-
lates the solution of the Boltzmann equation in the relaxation
time approximation to the Landauer formalism.

By making the definition



�x
� �

�
k�


�x
��E − Ek�

�
k�

��E − Ek�
, �9�

Eq. �8� can be expressed as

� �E� =

�x

2��


�x
�



�x
�D�E� =

�x

2��


�x
�

�
k


�x
��E − Ek� , �10�

where D�E�=�
k

��E−Ek� is the density of states �DOS�.

Finally, according to Eq. �7�, we find

M�E� =
h

2L
�

k


�x
��E − Ek� �11�

and



��E��� = 2

�x

2��


�x
�

. �12�

Equation �11� is a well-known result that relates the DOM in
the Landauer formalism to the bandstructure.45,59 Equation
�12� is a new results that define an appropriately defined
mean-free-path �the mean-free-path for backscattering� so
that the Landauer results agree with the Boltzmann equation
in the relaxation time approximation. Assuming isotropic en-
ergy bands, Eq. �12� can be evaluated in one-dimension
�1D�, two-dimensions �2D�, and three-dimensions �3D� to
find



��E��� = 2��E���E� �1D� , �13a�



��E��� = ��/2���E���E� �2D� , �13b�



��E��� = �4/3���E���E� �3D� . �13c�

In practice, a constant scattering time is often assumed for
the Boltzmann equation, but this is hard to justify. In the
Landauer approach, a constant mean-free-path simplifies cal-
culations and can be justified in 3D for parabolic bands when
the scattering rate is proportional to the DOS.

The discussion above shows that M�E� is essentially the
carrier velocity times the DOS. If we consider a single para-
bolic CB, E=	2k2 /2m�, then M�E� for 3D is

M�E� = A
mDOM

�

2�	2 E , �14�

where the DOM effective mass �mDOM
� � is just m� for a

single, spherical band. �Results for 1D and 2D are given in
Ref. 46� For ellipsoidal energy bands, Eq. �11� can be evalu-
ated for each equivalent ellipsoid to find mDOM

� =�my
�mz

� with
the direction of current flow being along the x-direction. This
example shows that M�E� is related to the DOS in the 2D
plane transverse to the transport direction. The contributions
for each equivalent ellipsoid are then summed. For the CB of
silicon, the result is mDOM

� =2mt
�+4�mt

�m1
� which is 2.04m0.

Recall that the DOS effective mass is mDOS
� =62/3�m1mt

2�1/3

=1.06m0. This example shows that the DOM and DOS ef-
fective masses can be quite different. The DOS and the DOM
effective mass in the Landuaer approach are analogous to the
DOS and the conductivity effective mass in the Boltzmann
approach. Finally, for nonparabolic bands with Kane’s dis-
persion relation,60 E�1+
E�=	2k2 /2m�, M�E� for 3D be-
comes

M�E� = A
m�

2�	2E�1 + 
E� , �15�

where 
 is the nonparabolicity parameter. These analytical
results will be our reference against which we compare the
numerical results to be presented later.

Two procedures are available to numerically evaluate
M�E�. First, M�E� can be calculated by counting bands for a
given bandstructure, because we can express Eq. �11� as59,61

M�E� = �
k�

��E − Ek�
� , �16�

where � is the unit step function and k� refers to k states
perpendicular to the transport direction �i.e., transverse
modes�. Equation �16� is simply a count of the bands that
cross the energy of interest and provides a computationally
simple way to obtain M�E� from a given E�k�. Similar ex-
pressions have been used to numerically evaluate the DOM
for phonon transport from a given dispersion relations.62 A
MATLAB

® script that implements this calculation for Ge is
available.63

An alternative to counting the number of available bands
at a given energy consists of calculating the transmission
coefficient through a given structure as function of the injec-
tion energy. In the nonequilibrium Green’s function

formalism,59 T̄�E� is
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T̄�E� = Tr��1G�2G†� , �17�

where G is the retarded Green’s function and

�1,2 = i��1,2 − �1,2
† � , �18�

where �1,2 are the contact self-energies. This approach works
for bulk TEs, but it also allows us to obtain the TE param-
eters for quantum-engineered structures for which the elec-
tronic structure may be very different from the bulk.

For our calculations, we have developed a multidimen-
sional quantum transport simulator based on different flavors
of the nearest-neighbor tight-binding model. It solves
Schrödinger equation in the wave function formalism, which
in the ballistic limit is equivalent to the nonequilibrium
Green’s function �NEGF�, but computationally much more

efficient.64 To obtain the bulk transmission coefficient T̄�E�,
a small device structure composed of two to three unit cells
is constructed, two semi-infinite contacts are attached to both
ends of the simulation domain, and electrons and holes are
injected and collected from these contacts. This procedure is
repeated for different energies and wave vectors so that the
entire Brillouin zone of the considered semiconductor mate-
rial is spanned. We integrate the resulting transmission coef-
ficient over its momentum-dependence at a given energy to

evaluate T̄�E�.
To evaluate M�E� beyond the effective mass approxima-

tion, an accurate description of the electronic structure is
needed. Materials like Si, Ge, or GaAs have been parameter-
ized in the nearest-neighbor tight-binding �TB� model by
several groups65–67 with different levels of approximation
�e.g., sp3s� �Ref. 68� and sp3d5s� �Ref. 67� models� for many
years. More exotic materials like Bi2Te3 have been
parameterized.47,48 A comparison with energy bands obtained
from density functional theory shows that a nearest-neighbor
sp3d5s� tight-binding approach with spin-orbit coupling is
required to capture the essential characteristics of the Bi2Te3

bandstructure.48 Hence, we have extended our quantum
transport simulator described above to include the rhombo-
hedral crystal lattice and to calculate transmission coeffi-
cients through such structures.

III. RESULTS

In this section, we illustrate the techniques discussed in
Sec. II and show how full band calculations are related to
effective mass calculations. A few materials that are good
illustrations �not necessarily good TE materials� are com-
pared: �a� Ge to compare three approaches to compute the
DOM-counting bands, NEGF-TB model, effective mass ap-
proximation �EMA�—which should all agree rather well
since the Ge CBs are nearly parabolic, �b� Ge VB to see if
we can use an effective mass description for VB, �c� GaAs to
illustrate the effect of nonparabolicity, and �d� Bi2Te3 be-
cause it is commonly used TE with a more complex band-
structure.

Figure 1 shows the DOM, M�E� for the Ge CB as com-
puted by three different approaches. Counting bands gives
exactly the same M�E� obtained by NEGF-TB model. As
shown in Fig. 1, the EMA expression for M�E� �Eq. �14��
provides a good fit to the full band calculation near the CB
edge. Full band calculations of the DOS, D�E� and M�E� for
Ge, GaAs, and Bi2Te3 are shown in Fig. 2. Around the band
edge, the linear DOM M�E� versus energy expected from Eq.
�14� is observed for all materials considered—even for the
highly warped VB. In the bulk, M�E� varies linearly with E
because both D�E� and ��E� are proportional to �E. A linear
behavior of the “transport distribution” ��E� versus E has
previously been observed,49 but the transport distribution
varies as D�E� times �2�E�, so it is not expected to be exactly
linear when the relaxation time, �, is assumed to be constant.

To show the relation between full band calculation and
the EMA, a “DOM” effective mass �mDOM

� � was extracted
from the numerically evaluated M�E� using Eq. �14� and
compared to the analytical mDOM

� with number of valleys and
transport direction being accounted for. The results are listed
in Table I. The discrepancy is no larger than 10% for CB,
while it is about a factor of 2 for VB. As shown in Fig. 3 for
the CB of GaAs, a better fit can be obtained when nonpara-
bolicity is accounted for, and the discrepancy between ex-
tracted mDOM

� and analytic one reduced from 10% to 2%. As
listed in Table I and discussed in Sec. II, the DOS effective
masses are clearly different from the DOM effective masses-
except for GaAs, where the Gamma valley is the CB mini-
mum. Finally, note that although there is no simple relation

FIG. 1. �Color online� �a� Comparison of the DOMs, M�E�, computed by
three different approaches for Germanium �Ge�: NEGF-TB model, EMA,
and counting bands. The M�E� from counting bands �dashed line� is on top
of M�E� from the NEFG-TB model. �b� Illustration of bands counting
method for specific dispersion relation for Ge. Dotted line is guide to eye.
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between the light and heavy hole effective masses and the
numerically extracted mDOM

� for the VB, a constant mDOM
�

provides a good fit to T̄�E�.

IV. DISCUSSION

In this section, TE properties will be evaluated and in-
terpreted within the Landauer framework. Figure 4 compares
calculated Seebeck coefficients �S� using Eq. �2� to experi-
ments. The results are plotted versus reduced Fermi level

�
F= �EF−EC� /kBT�, and we assume that the scattering rate
�1 /�� is proportional to the DOS, i.e., phonon scattering is
dominant,69 which is equivalent to a constant mean-free-
path, �0. The Seebeck coefficient �Eq. �2�� is independent of
�0 The results clearly demonstrate that S is nearly indepen-
dent of electronic band structure �i.e., of mDOM

� �. In the ef-
fective mass approximation, the Seebeck coefficient in 3D is
S3D=−�kB /q���r+2�Fr+1�
F� /Fr�
F�−
F�, which depends
only on the location of the Fermi level and on r, where r is
the characteristic exponent that describes scattering. The
Seebeck coefficient depends weakly on electronic structure
but more strongly on scattering. Ioffe, for example, pointed
out the possibility of making use of ionized impurity scatter-
ing �r=2� to improve S.70

The constant mean-free-path was adjusted to give the
best match to experimental data for electrical conductivity
��� with its corresponding S. This approach is essentially the
same as the common approach in which the unknown relax-
ation time, �, is treated as a constant,40,48,49,71 which actually
turned out to be good approximation even for systems with
crystal anisotropy.49,71 With the best fit �0, the power factor
�PF=S2G� and electronic thermal conductivity ��e� were
then evaluated using Eqs. �1�–�3�. The TE figure of merit, ZT
was computed at 300 K using calculated values of PF and �e

and the experimentally determined the lattice thermal con-
ductivity, �l.

69 Figure 5 shows well-fitted results for Bi2Te3

with �0=18,4 nm for CB and VB, respectively. Figure 6

FIG. 2. �Color online� Full band calculations of the DOS and the DOM
M�E� for Ge, GaAs, and Bi2Te3. The midgap is located at E=0. The inset in
�b� shows M�E� near the CB edge for GaAs.

TABLE I. Analytic DOM and full band NEGF-TB simulation. For compari-
son, DOS effective masses �mDOS

� � are also listed. The transport direction is
along the x direction. The electron �me� and hole effective masses �mlh ,mhh�
in the device coordinate �x ,y ,z� are used for analytic effective mass calcu-
lations and are given in units of the free electron mass. The “heavy-hole”
effective masses �Ge: 0.35 and GaAs: 0.51� assume spherical symmetry
�Refs. 74 and 75�. The extracted heavy-hole effective mass for Ge and GaAs
has a strong anisotropy �Ge: 0.17 �100�, 0.37 �110�, 0.53 �111�, and GaAs:
0.38 �100�, 0.66 �110�, 0.84 �111��. CB denotes conduction band and VB
denotes valence band. The top three rows are for the CBs and generally
show good agreement between analytic and numerically extracted values.
The bottom three rows for VB generally show a much larger discrepancy.
The two columns at the right show that analytic and numerically extracted
DOS effective masses generally agree reasonably well, but the DOS effec-
tive masses are typically much lower than the DOM effective masses.

Material

mDOM
� mDOS

�

Analytic Extracted Analytic Extracted

Ge CB 4�myy
e mzz

e =1.18 1.24 0.56 0.51
GaAs CB myy =0.066 0.073 0.066 0.063

Bi2Te3 CB 2�mxx
e mzz

e +4�myy
e mzz

e =1.18 1.17 0.23 0.28
Ge VB myy

lh +myy
hh=0.37 1.63 0.35 0.32

GaAs VB myy
lh +myy

hh=0.59 0.97 0.52 0.39

Bi2Te3 VB 2�mxx
h mzz

h +4�myy
h mzz

h =1.39 3.53 0.36 0.41

FIG. 3. �Color online� Comparison of fitting based on parabolic dispersion
relation with fitting based on Kane dispersion relation. Nonparabolicity pa-
rameter 
 used or GaAs is 0.64 �Ref. 71�. Above 1 eV, L valleys contribute
to the DOM in addition to � valley.

FIG. 4. �Color online� Calculated Seebeck coefficients �S� using Eq. �2� and
experiments �Refs. 67 and 72–74� as a function of reduced Fermi level
�
F= �EF−EC� /kBT� We assumed that scattering rate �1 /�� is proportional to
the DOS, i.e., phonon scattering is dominant.�Ref. 67� The reduction in S
around 
F=−2 for Bi2Te3 is attributed to the bipolar conduction due to its
relatively small bandgap �0.162 eV�.
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compares the calculated PF and ZT versus Fermi level to
experiments for Ge, GaAs, and Bi2Te3. Calculated results
agree well with experiments. �The parameters used in these
calculations are summarized in Table II.� These results show
that the Landauer approach gives essentially the same accu-
racy as the BTE approach �although the use of a constant
mean-free-path is easier to justify than the use of a constant
relaxation time�. The Landauer approach has the benefit of
being readily extendable to ballistic �e.g., thermionic� and to
quantum-engineered structures.

We now consider the effective mass level treatment of
this problem. To calculate TE coefficients and analyze mea-
sured TE data within the EMA, two effective masses are

needed: �1� mDOM
� for M�E� calculation, �2� mDOS

� obtain the
reduced Fermi-level �
F= �EF−EC� /kBT� from measured car-
rier concentration. In the EMA,

S3D = −
kB

q
� �r + 2� · Fr+1�
F�

Fr�
F�
− 
F	 , �19�

G3D = �0
2q2

h

mDOM
� kBT

2�	2 ��r + 2�Fr�
F� , �20�

Ke,3D = �0T� kB

q
	22q2

h

mDOM
� kBT

2�	2 ��r + 3���r + 3�Fr+2�
F�

−
�r + 2�Fr+1

2 �
F�
Fr�
F�

	 , �21�

where ��j� is the Gamma function, the Fermi–Dirac integral
of order j is defined as F j�
F�=1 /��j+1���0

�dx xj / �1
+ex−
F�,72 r is the characteristic exponent describing a spe-
cific scattering mechanism, and the parameter �0 is deter-
mined by comparison with experiments. Figures 5 and 7
show that effective mass theory provides a good agreement
with full band atomistic simulation results.

TABLE II. Summary of parameters used in Fig. 6: fitted �0�nm� parameters,
experimental lattice thermal conductivity �l�Wm−1 K−1�. In the power law
form of the mean free path, 

��E���=�0�E /kBT�r r is 0 since we assumed
that phonon scattering is dominant.

Material �0 �l

Ge CB/VB 29/9.5 58
GaAs CB/VB 110/39 55
Bi2Te3 CB/VB 18/4 1.5

FIG. 6. �Color online� Calculated and measured PF and ZT as function of
the Fermi level. Used parameters are listed in Table II.

FIG. 7. �Color online� Comparison of EMA with full-band calculation for
Ge. On the y axis, Seebeck coefficient �S�, electrical conductivity �G� and
thermal conductivity by electron ��e� are plotted from 0 to 400 �V /K, 0 to
4�106 �−1 m−1, and 0 to 40 W m−1 K−1.

FIG. 5. �Color online� Comparison of the simulated and experimentally
measured S, G, and � for Bi2Te3 assuming a constant mean-free-path, �0

=18, 4 nm for CBs and VBs. Thermal conductivity is the sum of the elec-
tronic and lattice thermal conductivity. Used parameters are listed in Table
II.
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Because the VBs are coupled and warped, it is difficult
to predict mDOM

� from the values of the heavy- and light-hole
effective masses. Indeed, Table I shows a large discrepancy

between the expected and numerically extracted values.
From the Luttinger–Kohn model, the VB near the � point
can be expressed as73

E�k� − EV =
	2

2mx
��1k2 � �4�2

2k4 + 12��3
2 − �2

2��kx
2ky

2 + ky
2kz

2 + kx
2kz

2�� = Ak2 � �B2k4 + C2�kx
2ky

2 + ky
2kz

2 + kx
2kz

2� , �22�

where �i are the Luttinger parameters and A, B, and C are
constants.

From the definition of DOM, Eq. �11�, it is hard to derive
analytically the M�E� versus E relation and then find analyti-
cal expression for mDOM

� . But based on the counting bands
approach, we can readily see why the extracted mDOM

� is
about two times larger than expected one from EMA.

Figure 8�a� shows that the CB of GaAs is nearly para-
bolic near the � point. According to the counting bands ap-
proach, e.g., Eq. �16�, each band gives one conducting mode
for electrons at a specific energy, E, due to parabolic behav-
ior of dispersion relation. In other words, effective mass ap-
proximation assumes that each band gives one conducting
channel for an injected electron having a specific wave vec-
tors and energy E. When the bands are nearly parabolic, the
analytic mDOM

� agrees well with the mDOM
� extracted from full

band calculation, as we can see for the CB in Table I.
If we assume parabolic bands for the VB �heavy- and

light hole� close to the � point, the mDOM
� is expressed as

mDOM
� =mlh+mhh, which is approximately two times less than

the value extracted from full band calculation as shown in
Table I. As clearly shown in the Fig. 8�b�, most of bands for
holes �especially for heavy-hole� contribute at least two con-
ducting channels at a specific energy. The parabolic band
assumption, however, gives one conducting channel per band
and significantly underestimates the DOM for holes. Warped
VBs provide more conducting modes.

Using this argument, we may also explain qualitatively
the question of why mDOM

� is different between Ge and GaAs
even though the VBs look similar. Including results for Si
and InAs VBs, the hole DOM effective mass, mDOM

� ex-
tracted from full band calculations for Si, Ge, GaAs, and
InAs are given as, 2.40m0�1.63m0�0.97m0�0.65m0, re-

spectively. In Eq. �22�, the degree of warping can be judged
from the values of ��3

2−�2
2� /�2

2, which we call the warping
parameter. For �3=�2, Eq. �22� yields two parabolic bands
�heavy- and light- hole�. From the tabulated values of �i,
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the calculated warping parameter are 17�0.76�0.62
�0.20 for Si, Ge, GaAs, and InAs, respectively. This shows
that the degree of warping can qualitatively explain the rela-
tive magnitude of mDOM

� for Si, Ge, GaAs, and InAs even
though the VB for all those diamondlike materials looks
similar. One thing to note is that six-valley VB structure of
Bi2Te3 is another reason for its high mDOM

� .

V. SUMMARY AND CONCLUSION

The relation between the so-called transport distribution,
which determines the TE coefficients and begins with the
BTE, and the transmission obtained from the Landauer ap-
proach has been clarified in this paper. In particular, we
showed how the mean-free-path for backscattering in the
Landauer approach should be defined so that the Landauer
approach is consistent with the BTE in the relaxation time
approximation. We also showed that the transmission �trans-
port distribution� is readily obtained from the full band de-
scription of the electronic bandstructure of a semiconductor
using well-developed techniques—a simple semiclassical
band counting method and a quantum mechanical approach.
Several example calculations of the transmission and the TE
coefficients for representative bulk materials were presented
to demonstrate that Landauer approach provides an accurate
description of experimentally measured TE parameters, In
practice, the use of a constant mean-free-path in the Land-
auer approach is easier to justify than the use of a constant
relaxation time in the Boltzmann equation. The Landauer
approach also provides complementary insight into TE phys-
ics and can be applied to ballistic, quasiballistic, and quan-
tum engineered structures. Finally, we showed that an accu-
rate and simple effective mass model can be defined by
extracting a DOM effective mass from the given full band
results. One first computes M�E� from Eq. �16� and then fits
the linear portion near the band edge to Eq. �14�. For accu-
rate results, the fitting should be performed from the band
edge to �5kBT above the maximum expected Fermi level at
the highest temperature of operation.

FIG. 8. �Color online� �Color online� Energy dispersion relation showing
the lowest �a� CBs and �b� VBs of GaAs. �y axis ranges from EC �or EV� to
EC �or EV� +5kBT because −�f0 /�E spread about 5kBT.� Each dot represents
a conducting channels for positive moving electrons at specific energy for an
electron moving with a positive velocity. In the VBs, most of the bands
�especially heavy holes� have at least two conducting channels per energy
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