158 research outputs found

    Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents

    Get PDF
    Liquid crystals offer several advantages as solvents for molecules used for nuclear magnetic resonance quantum computing (NMRQC). The dipolar coupling between nuclear spins manifest in the NMR spectra of molecules oriented by a liquid crystal permits a significant increase in clock frequency, while short spin-lattice relaxation times permit fast recycling of algorithms, and save time in calibration and signal-enhancement experiments. Furthermore, the use of liquid crystal solvents offers scalability in the form of an expanded library of spin-bearing molecules suitable for NMRQC. These ideas are demonstrated with the successful execution of a 2-qubit Grover search using a molecule (13^{13}C1^{1}HCl3_3) oriented in a liquid crystal and a clock speed eight times greater than in an isotropic solvent. Perhaps more importantly, five times as many logic operations can be executed within the coherence time using the liquid crystal solvent.Comment: Minor changes. Published in Appl. Phys. Lett. v.75, no.22, 29 Nov 1999, p.3563-356

    Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Get PDF
    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide

    Magnetic resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema

    Get PDF
    Rapid ascent to high altitude commonly results in acute mountain sickness, and on occasion potentially fatal high-altitude cerebral edema. The exact pathophysiological mechanisms behind these syndromes remain to be determined. We report a study in which 12 subjects were exposed to a FiO2 = 0.12 for 22 h and underwent serial magnetic resonance imaging sequences to enable measurement of middle cerebral artery velocity, flow and diameter, and brain parenchymal, cerebrospinal fluid and cerebral venous volumes. Ten subjects completed 22 h and most developed symptoms of acute mountain sickness (mean Lake Louise Score 5.4; p < 0.001 vs. baseline). Cerebral oxygen delivery was maintained by an increase in middle cerebral artery velocity and diameter (first 6 h). There appeared to be venocompression at the level of the small, deep cerebral veins (116 cm3 at 2 h to 97 cm3 at 22 h; p < 0.05). Brain white matter volume increased over the 22-h period (574 ml to 587 ml; p < 0.001) and correlated with cumulative Lake Louise scores at 22 h (p < 0.05). We conclude that cerebral oxygen delivery was maintained by increased arterial inflow and this preceded the development of cerebral edema. Venous outflow restriction appeared to play a contributory role in the formation of cerebral edema, a novel feature that has not been observed previously

    Experimental Realization of A Two Bit Phase Damping Quantum Code

    Full text link
    Using nuclear magnetic resonance techniques, we experimentally investigated the effects of applying a two bit phase error detection code to preserve quantum information in nuclear spin systems. Input states were stored with and without coding, and the resulting output states were compared with the originals and with each other. The theoretically expected result, net reduction of distortion and conditional error probabilities to second order, was indeed observed, despite imperfect coding operations which increased the error probabilities by approximately 5%. Systematic study of the deviations from the ideal behavior provided quantitative measures of different sources of error, and good agreement was found with a numerical model. Theoretical questions in quantum error correction in bulk nuclear spin systems including fidelity measures, signal strength and syndrome measurements are discussed.Comment: 21 pages, 17 figures, mypsfig2, revtex. Minor changes made to appear in PR

    Altered mechanobiology of Schlemm’s canal endothelial cells in glaucoma

    Get PDF
    Increased flow resistance is responsible for the elevated intraocular pressure characteristic of glaucoma, but the cause of this resistance increase is not known. We tested the hypothesis that altered biomechanical behavior of Schlemm’s canal (SC) cells contributes to this dysfunction. We used atomic force microscopy, optical magnetic twisting cytometry, and a unique cell perfusion apparatus to examine cultured endothelial cells isolated from the inner wall of SC of healthy and glaucomatous human eyes. Here we establish the existence of a reduced tendency for pore formation in the glaucomatous SC cell—likely accounting for increased outflow resistance—that positively correlates with elevated subcortical cell stiffness, along with an enhanced sensitivity to the mechanical microenvironment including altered expression of several key genes, particularly connective tissue growth factor. Rather than being seen as a simple mechanical barrier to filtration, the endothelium of SC is seen instead as a dynamic material whose response to mechanical strain leads to pore formation and thereby modulates the resistance to aqueous humor outflow. In the glaucomatous eye, this process becomes impaired. Together, these observations support the idea of SC cell stiffness—and its biomechanical effects on pore formation—as a therapeutic target in glaucoma

    InsP3 receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences

    Get PDF
    Orai1 proteins have been recently identified as subunits of SOCE (store-operated Ca2+ entry) channels. In primary isolated PACs (pancreatic acinar cells), Orai1 showed remarkable co-localization and co-immunoprecipitation with all three subtypes of IP3Rs (InsP3 receptors). The co-localization between Orai1 and IP3Rs was restricted to the apical part of PACs. Neither co-localization nor co-immunoprecipitation was affected by Ca2+ store depletion. Importantly we also characterized Orai1 in basal and lateral membranes of PACs. The basal and lateral membranes of PACs have been shown previously to accumulate STIM1 (stromal interaction molecule 1) puncta as a result of Ca2+ store depletion. We therefore conclude that these polarized secretory cells contain two pools of Orai1: an apical pool that interacts with IP3Rs and a basolateral pool that interacts with STIM1 following the Ca2+ store depletion. Experiments on IP3R knockout animals demonstrated that the apical Orai1 localization does not require IP3Rs and that IP3Rs are not necessary for the activation of SOCE. However, the InsP3-releasing secretagogue ACh (acetylcholine) produced a negative modulatory effect on SOCE, suggesting that activated IP3Rs could have an inhibitory effect on this Ca2+ entry mechanism
    corecore