769 research outputs found

    Resolved Imaging of the HR 8799 Debris Disk with Herschel

    Full text link
    We present Herschel far-infrared and submillimeter maps of the debris disk associated with the HR 8799 planetary system. We resolve the outer disk emission at 70, 100, 160 and 250 um and detect the disk at 350 and 500 um. A smooth model explains the observed disk emission well. We observe no obvious clumps or asymmetries associated with the trapping of planetesimals that is a potential consequence of planetary migration in the system. We estimate that the disk eccentricity must be <0.1. As in previous work by Su et al. (2009), we find a disk with three components: a warm inner component and two outer components, a planetesimal belt extending from 100 - 310 AU, with some flexibility (+/- 10 AU) on the inner edge, and the external halo which extends to ~2000 AU. We measure the disk inclination to be 26 +/- 3 deg from face-on at a position angle of 64 deg E of N, establishing that the disk is coplanar with the star and planets. The SED of the disk is well fit by blackbody grains whose semi-major axes lie within the planetesimal belt, suggesting an absence of small grains. The wavelength at which the spectrum steepens from blackbody, 47 +/- 30 um, however, is short compared to other A star debris disks, suggesting that there are atypically small grains likely populating the halo. The PACS longer wavelength data yield a lower disk color temperature than do MIPS data (24 and 70 um), implying two distinct halo dust grain populations.Comment: 13 pages, 8 figures (6 color), accepted for publication in the Astrophysical Journa

    The debris disk - terrestrial planet connection

    Full text link
    The eccentric orbits of the known extrasolar giant planets provide evidence that most planet-forming environments undergo violent dynamical instabilities. Here, we numerically simulate the impact of giant planet instabilities on planetary systems as a whole. We find that populations of inner rocky and outer icy bodies are both shaped by the giant planet dynamics and are naturally correlated. Strong instabilities -- those with very eccentric surviving giant planets -- completely clear out their inner and outer regions. In contrast, systems with stable or low-mass giant planets form terrestrial planets in their inner regions and outer icy bodies produce dust that is observable as debris disks at mid-infrared wavelengths. Fifteen to twenty percent of old stars are observed to have bright debris disks (at wavelengths of ~70 microns) and we predict that these signpost dynamically calm environments that should contain terrestrial planets.Comment: Contribution to proceedings of IAU 276: Astrophysics of Planetary System

    Resolved Debris Discs Around A Stars in the Herschel DEBRIS Survey

    Full text link
    The majority of debris discs discovered so far have only been detected through infrared excess emission above stellar photospheres. While disc properties can be inferred from unresolved photometry alone under various assumptions for the physical properties of dust grains, there is a degeneracy between disc radius and dust temperature that depends on the grain size distribution and optical properties. By resolving the disc we can measure the actual location of the dust. The launch of Herschel, with an angular resolution superior to previous far-infrared telescopes, allows us to spatially resolve more discs and locate the dust directly. Here we present the nine resolved discs around A stars between 20 and 40 pc observed by the DEBRIS survey. We use these data to investigate the disc radii by fitting narrow ring models to images at 70, 100 and 160 {\mu}m and by fitting blackbodies to full spectral energy distributions. We do this with the aim of finding an improved way of estimating disc radii for unresolved systems. The ratio between the resolved and blackbody radii varies between 1 and 2.5. This ratio is inversely correlated with luminosity and any remaining discrepancies are most likely explained by differences to the minimum size of grain in the size distribution or differences in composition. We find that three of the systems are well fit by a narrow ring, two systems are borderline cases and the other four likely require wider or multiple rings to fully explain the observations, reflecting the diversity of planetary systems.Comment: 19 pages, 13 figures, 6 tables. Accepted for publication in MNRA

    The debris disk around gamma Doradus resolved with Herschel

    Full text link
    We present observations of the debris disk around gamma Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well-resolved at 70, 100 and 160 micron, resolved along its major axis at 250 micron, detected but not resolved at 350 micron, and confused with a background source at 500 micron. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modelling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best-fit 4 AU) and a cool outer belt extending from ~55 to 400 AU or an arrangement of two cool, narrow rings at ~70 AU and ~190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of ~10^{-5} and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within ~55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.Comment: 12 pages, 6 figures, accepted for publication in Ap

    Far-infrared and sub-millimetre imaging of HD 76582's circumstellar disc

    Get PDF
    Debris discs, the tenuous rocky and icy remnants of planet formation, are believed to be evidence for planetary systems around other stars. The JCMT/SCUBA-2 debris disc legacy survey ‘SCUBA-2 Observations of Nearby Stars’ (SONS) observed 100 nearby stars, amongst them HD 76582, for evidence of such material. Here, we present imaging observations by JCMT/SCUBA-2 and Herschel/PACS at sub-millimetre and far-infrared wavelengths, respectively. We simultaneously model the ensemble of photometric and imaging data, spanning optical to sub-millimetre wavelengths, in a self-consistent manner. At far-infrared wavelengths, we find extended emission from the circumstellar disc providing a strong constraint on the dust spatial location in the outer system, although the angular resolution is too poor to constrain the interior of the system. In the sub-millimetre, photometry at 450 and 850 µm reveals a steep fall-off that we interpret as a disc dominated by moderately sized dust grains (amin = 36 µm), perhaps indicative of a non-steady-state collisional cascade within the disc. A disc architecture of three distinct annuli, comprising an unresolved component at 20 au and outer components at 80 and 270 au, along with a very steep particle size distribution (γ = 5), is proposed to match the observations

    Deprojecting and constraining the vertical thickness of exoKuiper belts

    Get PDF
    Constraining the vertical and radial structure of debris discs is crucial to understanding their formation, evolution and dynamics. To measure both the radial and vertical structure, a disc must be sufficiently inclined. However, if a disc is too close to edge-on, deprojecting its emission becomes non-trivial. In this paper we show how Frankenstein, a non-parametric tool to extract the radial brightness profile of circumstellar discs, can be used to deproject their emission at any inclination as long as they are optically thin and axisymmetric. Furthermore, we extend Frankenstein to account for the vertical thickness of an optically thin disc (H(r)H(r)) and show how it can be constrained by sampling its posterior probability distribution and assuming a functional form (e.g. constant h=H/rh=H/r), while fitting the radial profile non-parametrically. We use this new method to determine the radial and vertical structure of 16 highly inclined debris discs observed by ALMA. We find a wide range of vertical aspect ratios, hh, ranging from 0.020±0.0020.020\pm0.002 (AU Mic) to 0.20±0.030.20\pm0.03 (HD 110058), which are consistent with parametric models. We find a tentative correlation between hh and the disc fractional width, as expected if wide discs were more stirred. Assuming discs are self-stirred, the thinnest discs would require the presence of at least 500 km-sized planetesimals. The thickest discs would likely require the presence of planets. We also recover previously inferred and new radial structures, including a potential gap in the radial distribution of HD 61005. Finally, our new extension of Frankenstein also allows constraining how hh varies as a function of radius, which we test on 49 Ceti, finding that hh is consistent with being constant.Comment: Accepted for publication in MNRAS. 17 pages. 16 figure

    ALMA 1.3 Millimeter Map of the HD 95086 System

    Full text link
    Planets and minor bodies such as asteroids, Kuiper-belt objects and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is most prominent through observations of its debris disk at millimeter wavelengths where emission is dominated by the population of large grains that stay close to their parent bodies. Here we present ALMA 1.3 mm observations of HD 95086, a young early-type star that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-belt analogs. The location of the Kuiper-belt analog is resolved for the first time. The system can be depicted as a broad (ΔR/R∼\Delta R/R \sim0.84), inclined (30\arcdeg±\pm3\arcdeg) ring with millimeter emission peaked at 200±\pm6 au from the star. The 1.3 mm disk emission is consistent with a broad disk with sharp boundaries from 106±\pm6 to 320±\pm20 au with a surface density distribution described by a power law with an index of --0.5±\pm0.2. Our deep ALMA map also reveals a bright source located near the edge of the ring, whose brightness at 1.3 mm and potential spectral energy distribution are consistent with it being a luminous star-forming galaxy at high redshift. We set constraints on the orbital properties of planet b assuming co-planarity with the observed disk.Comment: accepted for publication in A

    Incidence of type 2 diabetes after bariatric surgery: population-based matched cohort study

    Get PDF
    Background:- The effect of currently used bariatric surgical procedures on the development of diabetes in obese people is not well defined. We aimed to assess the effect of bariatric surgery on development of type 2 diabetes in a large population of obese individuals. Methods:- We did a matched cohort study of adults (age 20–100 years) identified from a UK-wide database of family practices, who were obese (BMI ≥30 kg/m2) and did not have diabetes. We enrolled 2167 patients who had undergone bariatric surgery between Jan 1, 2002, and April 30, 2014, and matched them—according to BMI, age, sex, index year, and HbA1c—with 2167 controls who had not had surgery. Procedures included laparoscopic gastric banding (n=1053), gastric bypass (795), and sleeve gastrectomy (317), with two procedures undefined. The primary outcome was development of clinical diabetes, which we extracted from electronic health records. Analyses were adjusted for matching variables, comorbidity, cardiovascular risk factors, and use of antihypertensive and lipid-lowering drugs. Findings:- During a maximum of 7 years of follow-up (median 2·8 years [IQR 1·3–4·5]), 38 new diagnoses of diabetes were made in bariatric surgery patients and 177 were made in controls. By the end of 7 years of follow-up, 4·3% (95% CI 2·9–6·5) of bariatric surgery patients and 16·2% (13·3–19·6) of matched controls had developed diabetes. The incidence of diabetes diagnosis was 28·2 (95% CI 24·4–32·7) per 1000 person-years in controls and 5·7 (4·2–7·8) per 1000 person-years in bariatric surgery patients; the adjusted hazard ratio was 0·20 (95% CI 0·13–0·30, p<0·0001). This estimate was robust after varying the comparison group in sensitivity analyses, excluding gestational diabetes, or allowing for competing mortality risk. Interpretation:- Bariatric surgery is associated with reduced incidence of clinical diabetes in obese participants without diabetes at baseline for up to 7 years after the procedure
    • …
    corecore