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ABSTRACT

Constraining the vertical and radial structure of debris discs is crucial to understanding their formation, evolution and dynamics.

To measure both the radial and vertical structure, a disc must be sufficiently inclined. However, if a disc is too close to edge-on,

deprojecting its emission becomes non-trivial. In this paper we show how Frankenstein, a non-parametric tool to extract the

radial brightness profile of circumstellar discs, can be used to deproject their emission at any inclination as long as they are

optically thin and axisymmetric. Furthermore, we extend Frankenstein to account for the vertical thickness of an optically thin

disc (𝐻 (𝑟)) and show how it can be constrained by sampling its posterior probability distribution and assuming a functional

form (e.g. constant ℎ = 𝐻/𝑟), while fitting the radial profile non-parametrically. We use this new method to determine the radial

and vertical structure of 16 highly inclined debris discs observed by ALMA. We find a wide range of vertical aspect ratios, ℎ,

ranging from 0.020 ± 0.002 (AU Mic) to 0.20 ± 0.03 (HD 110058), which are consistent with parametric models. We find a

tentative correlation between ℎ and the disc fractional width, as expected if wide discs were more stirred. Assuming discs are

self-stirred, the thinnest discs would require the presence of at least 500 km-sized planetesimals. The thickest discs would likely

require the presence of planets. We also recover previously inferred and new radial structures, including a potential gap in the

radial distribution of HD 61005. Finally, our new extension of Frankenstein also allows constraining how ℎ varies as a function

of radius, which we test on 49 Ceti, finding that ℎ is consistent with being constant.

Key words: circumstellar matter – planetary systems – methodsȷ numerical – techniquesȷ interferometric – planets and satellitesȷ

dynamical evolution and stability

1 INTRODUCTION

Debris discs are a ubiquitous component of planetary systems, ana-

logues of the Asteroid and Kuiper belts, and readily found around

20% of nearby AFGK stars (e.g. Su et al. 2006; Eiroa et al. 2013;

Sibthorpe et al. 2018). These discs are made of solids in a wide size

distribution from km-sized planetesimals down to 𝜇m-sized dust

grains. This size distribution is maintained by a collisional cascade

that grinds solids down to sizes small enough to be blown-out by

radiation pressure or stellar winds (Wyatt 2008; Hughes et al. 2018;

Marino 2022). Kuiper belt analogues (or exoKuiper belts), in par-

ticular, can be orders of magnitude brighter than planets at tens of

au and thus provide a unique window to study the formation and

dynamics of planetary systems. To this end, ALMA has been fun-

damental to constraining the distribution of large grains, for which

radiation forces are negligible, and thus trace better the dynamics and

location of planetesimals. Due to its high sensitivity and variable res-

olution, ALMA observations have provided precise measurements of

the structure of debris discs.

★ E-mailȷsebastian.marino.estay@gmail.com

The observed structure of debris discs provides important clues to

the properties of hypothetical embedded planets and give insight into

their dynamics. Radial structure can be used to infer the presence of

inner planets truncating the disc (e.g. Quillen 2006; Chiang et al.

2009; Mustill & Wyatt 2012; Nesvold & Kuchner 2015), embedded

planets clearing gaps (e.g. Marino et al. 2018, 2019; MacGregor et al.

2018; Marino et al. 2020; Nederlander et al. 2021) whose widths can

constrain the planet masses and migration histories (e.g. Morrison &

Malhotra 2015; Friebe et al. 2022), and the level of dynamical stirring

(Marino 2021). Non-axisymmetric structures such as clumps and disc

eccentricities can also reveal the dynamical shaping by planets (e.g.

Kalas et al. 2005; Wyatt 2006; Dent et al. 2014; Faramaz et al. 2019).

Finally, high-resolution ALMA observations have started to constrain

the vertical thickness of a few debris discs, typically revealing vertical

aspect ratios of ∼2 − 20% (Kennedy et al. 2018; Matrà et al. 2019;

Daley et al. 2019; Marino et al. 2019; Marino 2021; Hales et al.

2022; Marshall et al. 2023). Such measurements directly probe the

distribution of orbital inclinations, and thus can be used to constrain

the mass of the bodies stirring the disc. Moreover, measurements of

the vertical thickness at different wavelengths may also constrain the

internal strength of solids (Vizgan et al. 2022).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/m

n
ra

s
/s

ta
d
1
8
4
7
/7

2
0
5
5
2
7
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
3



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

2 James Terrill et al.

Despite the progress described above, it has been challenging to

determine both the radial and vertical structure of systems. This is

because the radial structure is best studied in face-on systems, while

the vertical structure is only accessible for highly inclined discs,

which then obscures the radial structure. Parametric models have

been used to fit the data and derive basic radial and vertical properties

(e.g. Marino et al. 2016, 2019; Kennedy et al. 2018; Matrà et al.

2019), but such methods rely on assuming parametric models that

could bias such estimates. Very recently, Han et al. (2022) developed a

tool called Rave that can deproject the emission of edge-on discs non-

parametrically and constrain their vertical thickness using thermal

emission images. Whilst Rave has been demonstrated to work well

with images of edge-on discs, there has not been a method that

could work directly with the interferometric visibilities measured by

ALMA (making full use of its resolution power) and with discs that

are not edge-on.

In this paper we present a new approach to simultaneously depro-

ject the emission of debris discs and constrain their vertical structure,

independent of their observed inclination1. In order to do so, we de-

velop a new extension of Frankenstein (Jennings et al. 2020, Frank

hereafter). Frank non-parametrically fits the real component of the

azimuthally averaged visibilities to obtain a 1D radial brightness pro-

file for a disc. The base version of the code assumes the disc is flat,

while our new extension takes into account the vertical thickness of

optically thin emission, which can be fitted in an iterative method.

This paper is structured as follows. In §2 we introduce the key

definitions to describe the emission of a debris disc and its visibilities.

In §3 we show how the vertical thickness of debris discs affects the

visibilities and can be incorporated into frank. In §4 we test the

new algorithm on simulated data and constrain its accuracy. In §5 we

apply our new extension of frank to archival ALMA data. Finally,

in §6 and §7 we discuss our findings and summarise our conclusions.

2 BACKGROUND AND DEFINITIONS

In this section we introduce a few key concepts to describe the struc-

ture of debris discs, their on-sky emission, and the measurement of

this emission with interferometers such as ALMA.

2.1 Surface density, aspect ratio, and emissivity

We start by defining the disc properties in cylindrical coordinates

(𝑟, 𝑧, 𝜙), with the origin at the central star position and the disc

midplane lying at 𝑧 = 0. We will assume discs are axisymmetric and

thus their mass density (𝜌) is only a function of 𝑟 and 𝑧. Vertically,

the density is assumed to follow a Gaussian distribution

𝜌(𝑟, 𝑧) = Σ(𝑟)
exp

(

− 𝑧2

2𝐻 (𝑟)2

)

√
2𝜋𝐻 (𝑟)

, (1)

where Σ(𝑟) is the surface density and 𝐻 (𝑟) the vertical standard

deviation or scale height. We will refer to the ratio ℎ = 𝐻/𝑟 as the

disc aspect ratio. The aspect ratio is directly related to the dispersion

of orbital inclinations in the disc with ℎ = 𝑖rms/
√

2 (Matrà et al.

2019). Finally, since debris discs are optically thin and vertically thin

(𝐻 ≪ 𝑟), their equilibrium temperature will scale approximately as
1√
𝑟

.

1 Although this method is applicable to any inclination, the constraints on

the vertical structure depend on the resolution (uv-coverage) and inclination

of a disc.

𝑥𝑑

−𝑦𝑑

𝑧𝑑

𝑦

−𝑥

𝑧 (Image taken from here)

𝑖

Disc plane

Figure 1. Illustration of the sky-projected coordinate system (𝑥, 𝑦) and disc

or deprojected coordinates (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑) .

Unless the vertical distribution (𝐻) varies significantly as a func-

tion of grain size, the volume emissivity at long wavelengths will

also have an approximately Gaussian structure (this assumption is

discussed in §6.4),

𝜖𝜈 (𝑟, 𝑧) = 𝜅𝜈 (𝑟)𝐵𝜈 [𝑇 (𝑟)]Σ(𝑟)
exp

(

− 𝑧2

2𝐻 (𝑟)2

)

√
2𝜋𝐻 (𝑟)

(2)

= 𝐼𝜈 (𝑟)
exp

(

− 𝑧2

2𝐻 (𝑟)2

)

√
2𝜋𝐻 (𝑟)

. (3)

Here 𝜅𝜈 (𝑟) and 𝐵𝜈 [𝑇 (𝑟)] are the opacity and Planck function. In the

final equality we have introduced 𝐼𝜈 (𝑟) = 𝜅𝜈 (𝑟)𝐵𝜈 [𝑇 (𝑟)]Σ(𝑟). For

any disc that is optically thin 𝐼𝜈 (𝑟) is simply the surface brightness

of a face-on disc.

For a disc that is not exactly face on, individual lines of sight

include contributions from a range of radii. Maintaining our optically

thin assumption, we may write the sky brightness at a point (𝑥, 𝑦) as

𝐼s (𝑥, 𝑦) =
∫

𝜖 ′𝜈 (𝑥, 𝑦, 𝑧)d𝑧, (4)

where 𝜖 ′𝜈 (𝑥, 𝑦, 𝑧) is determined from the face-on (or de-projected)

emissivity, 𝜖𝜈 (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑), by a rotation of the coordinate system.

Without loss of generality, we may consider rotations about the 𝑥-

axis only (i.e. a disc with a position angle of 90◦)2, as shown in

Figure 1. Thus, 𝑥𝑑 = 𝑥, 𝑦𝑑 = 𝑦 cos 𝑖− 𝑧 sin 𝑖, and 𝑧𝑑 = 𝑦 sin 𝑖 + 𝑧 cos 𝑖

(where 𝑖 is the inclination).

In the next section we will discuss how the vertical structure can

be taken into account directly in Fourier space, but first we consider

the special case of a razor-thin disc (𝐻 → 0), for which we arrive at

the well-known result 𝐼s (𝑥, 𝑦) = 𝐼𝜈 (𝑥𝑑 , 𝑦𝑑)/cos 𝑖. By 𝐼𝜈 (𝑥𝑑 , 𝑦𝑑) we

explicitly mean 𝐼𝜈 (𝑟) where 𝑟2
= 𝑥2

𝑑
+ 𝑦2

𝑑
and 𝑦𝑑 = 𝑦/cos 𝑖 (since

𝑧𝑑 = 0). It should be noted that the 𝐼s (𝑥, 𝑦) ∝ 1/cos 𝑖 scaling only

applies for optically thin emission; for an optically thick disc the

1/cos 𝑖 term is absent.

2.2 Visibility

An interferometer such as ALMA samples the sky brightness as an

ensemble of complex visibilities,

𝑉𝑠 (𝑢, 𝑣) =
∬

𝑆
𝑃𝐵(𝑥, 𝑦)𝐼𝑠 (𝑥, 𝑦) exp [−2𝜋𝑖(𝑢𝑥 + 𝑣𝑦)]𝑑𝑥 𝑑𝑦, (5)

where 𝑆 is the region of the sky over which the integral is taken and

𝑃𝐵(𝑥, 𝑦) is the antenna primary beam, with a peak of 1 and FWHM

2 For real data, we account for the position angle of the disc major axis by

rotating the data in visibility space. In this work we have assumed the position

angle to be well-known, which is true for the studied sample in §5.
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Deprojecting exoKuiper belts 3

∼𝜆/12 m for ALMA’s 12m diameter antennas. In this paper we will

focus on discs smaller than the primary beam and for which we

will approximate 𝑃𝐵(𝑥, 𝑦) ≈ 1. Now 𝑉𝑠 (𝑢, 𝑣) is simply the Fourier

Transform of the sky brightness.

For the razor-thin disc,

𝑉𝑠 (𝑢, 𝑣) =
∬

𝑆

𝐼𝜈 (𝑥, 𝑦/cos 𝑖)
cos 𝑖

exp [−2𝜋𝑖(𝑢𝑥 + 𝑣𝑦)]𝑑𝑥 𝑑𝑦. (6)

If we denote 𝑉0 (𝑢, 𝑣) as the visibility distribution we would observe

if the disc were face-on, then by changing variables to 𝑦𝑑 = 𝑦/cos 𝑖

it is straightforward to demonstrate that 𝑉𝑠 (𝑢, 𝑣) = 𝑉0 (𝑢, 𝑣 cos 𝑖).
This means that we can de-project in Fourier space via a simple

transformation of the u-v coordinates to (𝑢𝑑 , 𝑣𝑑) = (𝑢, 𝑣 cos 𝑖). 3 As

a disc becomes more inclined and its emission appears compressed

along the 𝑦-axis in the image space, the morphology of its visibilities

becomes stretched in the 𝑣-axis on the Fourier space.

For a disc with a finite thickness we can use these ideas to compute

the visibilities without needing to directly compute the sky bright-

ness, as long as we assume the emission is optically thin. From

Equation 3 and Equation 5, we have

𝑉𝑠 (𝑢, 𝑣) =
∭

𝑉
𝜖 ′𝜈 (𝑥, 𝑦, 𝑧) exp [−2𝜋𝑖(𝑢𝑥 + 𝑣𝑦)]𝑑𝑥 𝑑𝑦 𝑑𝑧 (7)

Substituting the de-projected coordinates (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑) for the sky-

plane coordinates (𝑥 = 𝑥𝑑 , 𝑦 = 𝑦𝑑 cos 𝑖 + 𝑧𝑑 sin 𝑖, 𝑧 = −𝑦𝑑 sin 𝑖 +
𝑧𝑑 cos 𝑖) and noting that 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 𝑑𝑥𝑑 𝑑𝑦𝑑 𝑑𝑧𝑑 , we arrive at

𝑉𝑠 (𝑢, 𝑣) =
∭

𝑉
𝐼𝜈 (𝑟)

exp

(

− 𝑧2
𝑑

2𝐻 (𝑟)2

)

√
2𝜋𝐻 (𝑟)

× exp [−2𝜋𝑖(𝑢𝑑𝑥𝑑 + 𝑣𝑑𝑦𝑑 + 𝑤𝑑𝑧𝑑)]𝑑𝑥𝑑 𝑑𝑦𝑑 𝑑𝑧𝑑 ,

(8)

where 𝑟2
= 𝑥2

𝑑
+ 𝑦2

𝑑
and (𝑢𝑑 , 𝑣𝑑 , 𝑤𝑑) = (𝑢, 𝑣 cos 𝑖, 𝑣 sin 𝑖). Complet-

ing the Fourier Transform in the 𝑧𝑑-direction we arrive atȷ

𝑉𝑠 (𝑢, 𝑣) =
∬

𝑆
𝐼𝜈 (𝑟) exp

{

−1

2
[2𝜋𝑤𝑑𝐻 (𝑟)]2

}

× exp [−2𝜋𝑖(𝑢𝑑𝑥𝑑 + 𝑣𝑑𝑦𝑑)]𝑑𝑥𝑑 𝑑𝑦𝑑 . (9)

It is straightforward to confirm that this expression reproduces our

previous expressions for inclined, optically-, and razor-thin discs

when 𝐻 (𝑟) = 0. Hence for discs that are sufficiently thin (small 𝐻)

or close to face-on (small 𝑤𝑑) the visibilities are hardly modified by

the vertical structure, and therefore any tool that can infer brightness

profile from the visibilities, such as frank, can also be used for

inclined discs.

Although we cannot proceed any further analytically unless 𝐻 (𝑟)
and 𝐼𝜈 (𝑟) take a particularly simple form, we will show that frank

can easily be modified to incorporate the exponential term arising

from the non-zero thickness. This allows frank to be used for highly

inclined discs if they are optically thin. Before doing so, we briefly

review the standard approach used to infer 𝐼𝜈 (𝑟) in frank.

3 Again it should be noted that for an optically thick disc 𝑉𝑠 (𝑢, 𝑣) ∝ cos 𝑖.

By default frank assumes optically thick emission and corrects for this

proportionality for its standard (razor thin) disc model. This is usually the

desired behaviour since it results in an extracted radial profile that would

have the same flux as one extracted from an image plane analysis (in the limit

of infinite resolution). Such an assumption is however not valid if one assumes

an optically thin disc, which is the case for the debris disc model developed

here. The new version of frank includes now an option to consider optically

thin or thick emission.

3 A VERTICAL EXTENSION TO FRANKENSTEIN

frank reconstructs a disc’s radial intensity profile by assuming az-

imuthal symmetry and non-parametrically fitting the real compo-

nent of the deprojected visibilities in 1D (Jennings et al. 2020). The

model obtains super-resolution to recover disc features that are under-

resolved in a standard CLEAN image. frank has been applied to tens

of protoplanetary discs (e.g., Jennings et al. 2022) and a few debris

discs (Marino et al. 2020, Imaz-Blanco et al. submitted), revealing

new radial features. In comparison to parametric radiative transfer

models with multiple parameters that can be fit to ALMA data using

MCMC methods (e.g. Marino et al. 2016) over hours on multiple

CPUs, frank performs a fit in ≲ 1 minute on a single CPU.

3.1 Frankenstein applied to razor-thin discs

Frank infers the intensity profile, 𝐼 (𝑟), by using a Discrete Hankel

Transform to map the intensities at a set of radial locations, 𝑟𝑘 , to the

visibility space. The intensities, 𝐼 (𝑟𝑘), are then inferred by fitting the

observed visibilities and regularized using a Gaussian process. Below

we briefly describe the most important equations to understand the

method, to later expand it to consider the vertical thickness of discs.

We start by recalling that for an axisymmetric disc (after depro-

jection), the 2D Fourier transform reduces to 1D as the Hankel trans-

formation with Bessel function kernels (Bracewell 2000; Thompson

et al. 2017)

𝑉𝑠 (𝑞) =
∫ 𝑅out

0
𝐼𝑠 (𝑟)𝐽0 (2𝜋𝑞𝑟)2𝜋𝑟𝑑𝑟, (10)

𝐼𝑠 (𝑟) =
∫ 𝑄max

0
𝑉𝑠 (𝑞)𝐽0 (2𝜋𝑞𝑟)2𝜋𝑞𝑑𝑞, (11)

where 𝑞 =

√︃

𝑢2
𝑑
+ 𝑣2

𝑑
and 𝑟 =

√︃

𝑥2
𝑑
+ 𝑦2

𝑑
. Assuming 𝐼 (𝑟) = 0 beyond

some radial distance 𝑅out and 𝑉 (𝑞) = 0 beyond some baseline 𝑄max

we can expand 𝑉 (𝑞) and 𝐼 (𝑟) in a Fourier-Bessel series

𝐼𝑠 (𝑟) =
∞
∑︁

𝑘=1

𝛼𝑘𝐽0

(

𝑗0𝑘𝑟

𝑅out

)

, (12)

𝑉𝑠 (𝑞) =
∞
∑︁

𝑘=1

𝛽𝑘𝐽0

(

𝑗0𝑘𝑞

𝑄max

)

, (13)

where 𝑗0,𝑘 is the 𝑘th zero of 𝐽0, and the coefficients 𝛼𝑘 and 𝛽𝑘 can

be computed as

𝛼𝑘 =
1

𝜋𝑅2
out𝐽

2
1
( 𝑗0𝑘)

𝑉𝑠

(

𝑗0𝑘

2𝜋𝑅out

)

, (14)

𝛽𝑘 =
1

𝜋𝑄2
max𝐽

2
1
( 𝑗0𝑘)

𝐼𝑠

(

𝑗0𝑘

2𝜋𝑄max

)

. (15)

In practice, this infinite series must be truncated after 𝑁 terms,

and therefore 𝐼𝑠 is determined by baselines below 𝑞 =
𝑗0,𝑁+1

2𝜋𝑅out
, and

𝑉𝑠 is determined by radii smaller than 𝑟 =
𝑗0,𝑁+1

2𝜋𝑄max
. We enforce

𝑄max = 𝑗0,𝑁+1/2𝜋𝑅out, for the DHT, with the collocation pointsȷ

𝑟𝑘 ≔ 𝑅out 𝑗0𝑘/ 𝑗0,𝑁+1. (16)

𝑞𝑘 ≔ 𝑗0𝑘/2𝜋𝑅out. (17)

Now the intensity is a vector I𝑠 , with components 𝐼𝑘 ≔ 𝐼𝑠 (𝑟𝑘). For

a given set of intensities, I𝑠 , frank uses Equation 13 to compute the

‘model visibilities’,

V𝑠 (q) = H(q)I𝑠 (18)
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4 James Terrill et al.

where

H(q) 𝑗𝑘 =
4𝜋𝑅2

out

𝑗2
0,𝑁+1

𝐽2
1
( 𝑗0𝑘)

𝐽0

(

2𝜋𝑞 𝑗𝑅out
𝑗0𝑘

𝑗0,𝑁+1

)

. (19)

For a set of measured visibilies, V, with corresponding baselines q

and statistical weights, w, the intensity is inferred from the posterior

probability distribution,

𝑃(I|V, p) = G (V − H(q)I𝑠 ,N) G (I𝑠 ,S(p))
𝑃(V |p) , (20)

where G(x,𝚺) is a Gaussian distribution with mean zero and covari-

ance 𝚺, N = diag(1/w), and S(p) is the covariance of the Gaussian

process prior. For details of this prior and the parameters, p, upon

which it depends, see Jennings et al. (2020). Following Jennings et al.

(2020) we will refer to p as the power spectrum parameters. Since

we have not modified either the prior or the way the parameters are

determined, we do not repeat the description here.

Since 𝑃(I|V, p) is the product of two Gaussians, it is also a Gaus-

sian, and has covariance D and mean 𝝁,

D =

(

M + S(p)−1
)−1

, (21)

𝝁 = D j, (22)

where

M = H(q)𝑇N−1H(q), (23)

j = H𝑇N−1V. (24)

Finally, I𝑠 = 𝝁 is used as the inferred brightness.

3.2 Treating vertical thickness in frank

In §2.2 we showed that visibilities of a disc with a Gaussian vertical

structure are given by Equation 9. Assuming both 𝐼 (𝑟) and 𝐻 (𝑟) are

axisymmetric, then we obtain a Hankel Transform in which 𝐼𝑠 (𝑟)
is replaced with 𝐼𝑠 (𝑟) exp

{

− 1
2
[2𝜋𝑤𝑑𝐻 (𝑟)]2

}

. Equation 10 then be-

comes

𝑉𝑠 (𝑞, 𝑤𝑑) =
∫ 𝑅out

0
𝐼𝑠 (𝑟) exp

{

−1

2
[2𝜋𝑤𝑑𝐻 (𝑟)]2

}

𝐽0 (2𝜋𝑞𝑟)2𝜋𝑟𝑑𝑟.

(25)

This implies that the Fourier-Bessel series can also be modified to

account for the vertical structure by making the substitution

𝛽𝑘 → 𝛽′𝑘 (𝑤𝑑) = 𝛽𝑘 × exp

{

−1

2
[2𝜋𝑤𝑑𝐻 (𝑟𝑘)]2

}

. (26)

It follows from this that, if 𝐻 (𝑟) is a known function, we can infer

𝐼 (𝑟) directly from the visibilities by modifying the mapping between

the intensity at the collocation points I(𝑟𝑘) and the model visibilities

V𝑠 (𝑞). We make the substitution

H(q) 𝑗𝑘 −→ H(q) 𝑗𝑘 exp

(

−1

2

[

2𝜋𝑤𝑑𝐻 (𝑟 𝑗 )
]2
)

. (27)

This change to H(q) is used in Equations 21–24 or when comput-

ing the model visibilities (Equation 18), with the code otherwise

unchanged. To be explicit, the quantity inferred by this module in

frank is the vertically integrated intensity of a face-on disk, i.e.

𝐼𝜈 (𝑟).

3.3 Frankenstein - parameters

The algorithm has five input parameters (in addition to a supplied or

internally determined disc geometry), two of which alter the model’s

Gaussian process prior and should thus be varied to explore the

significance of features recovered in the radial brightness profile.

These areȷ

• 𝛼 effectively sets the signal-to-noise threshold at which the

model no longer attempts to fit the visibilities. In practice this sets a

maximum baseline out to which the data are fit. The range recom-

mended by Jennings et al. (2020) is 1.0 − 1.3.

• 𝑤smooth is a parameter included to counteract underestimated

uncertainties arising from incomplete (𝑢, 𝑣) sampling by encourag-

ing smoothness in the power spectrum parameters, p. It has little ef-

fect on the reconstructed brightness profile. The range recommended

by Jennings et al. (2020) is 10−4 − 10−1, with higher values having

smoother p.

Our new, vertically aware extension of frank introduces an addi-

tional parameterȷ

• Our extension allows for the vertical structure, 𝐻 (𝑟), to be sup-

plied. We assume 𝐻 (𝑟) = ℎ𝑟 with ℎ constant unless otherwise stated,

and therefore the new input parameter is the aspect ratio, ℎ. Its value

is not known a priori, so we run fits over a grid of values as de-

scribed below. Ultimately, we aim to constrain ℎ iteratively. Note

that a constant ℎ is equivalent to assuming that the dispersion of

orbital inclinations is constant across of semi-major axis. This would

be the case, for example, if the disc is vertically stirred by a slightly

misaligned companion and the age of the system is longer than the

secular timescale (e.g. Wyatt et al. 1999). It is possible that ℎ varies

with radius, e.g. if the disc is self-stirred (e.g. Krivov & Booth 2018),

and we explore this possibility in §6.2.

The remaining three parameters in frank are the number of bright-

ness points, 𝑁 , maximum radius of the fit, 𝑅max, and 𝑝0, the scale

parameter for the inverse Γ hyperprior (see Jennings et al. 2020).

4 TESTING THE METHOD ON SIMULATED DATA

In order to test the method, we start by applying it to simulated data.

This provides an opportunity to learn how the algorithm works when

the true value of the aspect ratio, ℎ, the inclination, 𝑖, and the radial

structure are known. The inferences made here allow conclusions to

be drawn from real data where the true radial profile is unknown.

4.1 Simulating simple debris discs

Simple models of discs are created by defining the distribution of the

dust and the geometry of the system and then simulating images using

radiative transfer simulations with the python package disc2radmc4

(Marino et al. 2022) that uses RADMC3D (Dullemond et al. 2017)5

to produce synthetic images.

Our model consists of a Solar analog at 50 pc, surrounded by a

dusty disc with a mass of 0.5 𝑀⊕ distributed in grains from 1 𝜇m

up to 1 cm with the same spatial distribution (see below), with a size

distribution with a power law index of -3.5, and made from a mix of

astrosilicates, water ice and amorphous carbon (as in Marino et al.

2018). To test the method, we use a range of different surface density

4 httpsȷ//github.com/SebaMarino/disc2radmc/
5 httpsȷ//www.ita.uni-heidelberg.de/ dullemond/software/radmc-3d/
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Deprojecting exoKuiper belts 5

distributions and aspect ratios, and create a model disc. For each

model we create a simulated image, which is then Fourier transformed

to compute its model visibilities at a set of (𝑢, 𝑣) coordinates. In order

to represent a realistic 𝑢𝑣 coverage we use the same coverage as the

ALMA observations of AU Mic presented by Daley et al. (2019).

These observations marginally resolve AU Mic’s scale height, and

thus we consider them as an ideal benchmark. The visibility sampling

provides a ∼0.′′3 = 15 au spatial resolution at 50 pc (the distance

assumed for the simulated discs) 6, although note that this is the

image resolution and that it is slightly poorer than the true resolution

power demonstrated by Frankenstein (Jennings et al. 2020). Random

Gaussian noise is added to the visibilities with the same amplitude

as the weights of the real AU Mic observations.

Three types of disc are created, each with a different type of surface

density distributionȷ

• A set of nine discs with Gaussian radial distributions of various

widths,𝜎𝑟 ∈ {5, 10, 20} au, centred at 𝑟𝑐 = 100 au, and aspect ratios,

ℎ ∈ {0.01, 0.03, 0.1}. An example is shown in the top panel of Figure

2, both face-on and edge-on.

• A case of a double Gaussian radial distribution, with ℎ = 0.03

and 𝜎𝑟 = 20 au, peaking at 100 au and 200 au, shown in the middle

panel of Figure 2.

• A case of a power law radial distribution (Σ(𝑟) ∝ 𝑟−1) from 50

to 250 au, and with ℎ = 0.01, shown in the bottom panel of Figure 2.

4.2 Recovering the radial profile of edge-on discs

In this section, we test how well we can recover the radial profile

of our simulated edge-on disc observations with added noise using

frank. We use the known true aspect ratio, and set 𝛼 = 1.04 and

𝑤smooth = 10−3. Note that deviating from the default values (𝛼 =

1.05 and𝑤smooth = 10−4) does not change significantly the recovered

profiles. To test the quality of the frank fits, we compare them with

the true radial profiles measured using the face-on images of the

discs. Note that since the central star contribution to the visibilities is

simply a constant with a value equal to its flux, we subtract this from

the model visibilities prior to performing the fit with frank. This

is to avoid some oscillatory artefacts in the recovered radial profile

produced as frank forces the model visibilities to zero instead of the

stellar flux at long baselines (Jennings et al. 2022).

Figure 3 presents the radial profiles retrieved by frank (blue)

compared with the true radial profiles (orange). The deprojected ra-

dial intensity profiles reproduce well the true profile, with a peak at

𝑟 = 100 au, for all disc thicknesses and widths. The shape of the peak

follows the true Gaussian shape closely for each fit, within 1 standard

deviation (darkest shaded region) for the majority of the curve7. The

retrieved and true profiles only differ significantly when the ring is

very narrow and sharp. In those cases, the profile recovered by frank

has a shallower and smoother peak due to the effective resolution of

6 This resolution corresponds to the beam size using natural weights of two

out of three ALMA observations of AU Mic that we used here and that are

reported in (Daley et al. 2019). Note that there is still information on smaller

scales, with the longest baseline corresponding to 0.22
7 Note that the blue shaded regions, which represents the uncertainty of the

intensity profile, is computed using the diagonal of the covariance matrix.

This is only an estimate that is calculated at the maximum a posteriori power

spectrum that approximately represents a fit’s statistical uncertainty, but it

does not include the systematic uncertainty (due to incomplete 𝑢 − 𝑣 sam-

pling), so it is always an underestimate. For a detailed discussion see Jennings

et al. (2020)

Figure 2. Simulated debris disc images at 0.88 mm, assuming a Gaussian

ring with ℎ = 0.1, a double Gaussian ring with ℎ = 0.03, and an inverse

power law distribution with ℎ = 0.01 The images on the left are orientated

face-on (𝑖 = 0◦), while the ones on the right are edge-on. These images have

not been convolved with any PSF nor include noise.

Frank (set by the uv-coverage and signal-to-noise of the data). The

deprojection remains within 3 standard deviations of zero, either side

of the peak, where there is no real emission. The oscillations show

a weak trend of decreasing amplitude with increasing ℎ (roughly

similar for ℎ = 0.01, 0.03, smaller near the origin for ℎ = 0.1). The

oscillation amplitude grows as the disc becomes increasingly nar-

rower than the image resolution of 15 au. This is because narrow

rings in the profile generate oscillations in the corresponding visibil-

ity distribution that are not easily extrapolated by the model beyond

sampled baselines. Higher resolution observations would thus reduce

the amplitude of radial brightness profile oscillations.

Figure 4 shows frank can accurately recover more complex ra-

dial profiles, such as a double Gaussian distribution and an inverse

power law distribution. In particular, for a double Gaussian, the fit is

within 3 standard deviations of the true profile. The decaying radial

profile has a sharp inner and outer edge, which frank smooths. The

smooth decay is recovered well, although it oscillates around the true

profile due to the noise and sharp inner edge that causes systematic

oscillations.

To conclude, the new extension of frank can recover with reason-

able accuracy the radial profile of simple edge-on discs whilst taking

into account their vertical structure. Only sharp distributions are not

well recovered, and these recovered profiles still achieve a higher
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6 James Terrill et al.

Figure 3. The recovered radial profiles of 9 simulated Gaussian debris discs,

plotted in blue. The shaded regions display 1 and 3𝜎 confidence regions. The

orange curves show the true radial profile. The aspect ratio of the discs, ℎ,

varies vertically; the width of the discs varies horizontally.

resolution than standard imaging methods such as CLEAN (Jennings

et al. 2020). The only difference in the radial profiles for different

vertical thicknesses is that some oscillatory artefacts are stronger

for small ℎ. While these artifacts are pronounced in some cases, in

general the algorithm performs well for all ℎ.

4.3 Estimating the aspect ratio

Thus far, only the true value of ℎ has been used in order to test the

ability of the algorithm to recover a radial profile of edge-on debris

discs. In this section, the ability of the algorithm to constrain an

unknown aspect ratio is tested. To achieve this, we need to evaluate the

probability of each value of ℎ, marginalized over the other parameters

in the model. Ideally, we should marginalize over the brightness, I,

the power spectrum parameters, p, and any geometry parameters such

as the inclination and position angle. Since 𝑃(I|V, p) is Gaussian in

I, we can marginalized over I analytically. This marginalization is

already used in frank when choosing p, the result of which is

log 𝑃(p|V, ℎ, 𝜷) = 1

2
j𝑇D j + 1

2
log |D| − 1

2
log |S(p) |

−
∑︁

𝑘

[

(𝛼 − 1) log 𝑝𝑘 +
𝑝0

𝑝𝑘

]

− 𝑤smooth

2
log(p)𝑇T log(p)

− 1

2
V𝑇N−1V + const. (28)

(Jennings et al. 2020). Here we have explicitly denoted the depen-

dence on the disc aspect ratio, ℎ, which appears in D and j. We also

introduce 𝜷 to represent additional parameters such as the disc ge-

ometry and the parameters of the hyperprior, 𝑃(p|𝛼, 𝑤smooth, 𝑝0),
which is an inverse gamma distribution with an added smoothness

term.

Next, to obtain 𝑃(ℎ |V, 𝛽) we need to introduce a prior on the

aspect ratio (which we assume to be flat as in previous works) and to

Figure 4. Radial profiles recovered for radial distributions other than a single

Gaussian, with the associated 1 and 3𝜎 confidence regions shaded, and the

true radial profile shown. Panel (a) shows the profile of a simulated double

Gaussian disc, where each ring has a width of 20 au. Panel (b) shows the

profile of a disc simulated with a decaying distribution, Σ ∝ 1
𝑟

.

marginalize over p, i.e.

𝑃(ℎ |V, 𝛽) =
∫

𝑃(ℎ, p|V, 𝛽)dp =

∫

𝑃(p|V, ℎ, 𝛽)𝑃(ℎ)dp. (29)

For constant 𝑃(ℎ) its value does not affect the inferred values of ℎ

and has thus been dropped from subsequent expressions.

Given the complex form of Equation 28 it is not possible to perform

this marginalization analytically. Monte-Carlo methods of integrat-

ing Equation 28 are also prohibitively expensive since p contains

the same number of parameters as the brightness profile, i.e. typi-

cally a few 100 parameters. To progress we therefore perform the

marginalization approximately, using the Laplace method (Mackay

2003). That is we make a Gaussian approximation to 𝑃(p|V, ℎ, 𝜷)
around the maximum likelihood values, pMAP. As in Jennings et al.

(2020), we maximize 𝑃(p|V, ℎ, 𝜷) with respect to log p, and estimate
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Deprojecting exoKuiper belts 7

Figure 5. Aspect ratio estimates for single Gaussian discs as a function of 𝜎𝑟

for three different values of ℎ𝑡 (0.01, 0.03, and 0.1 from top to bottom). The

blue and orange errorbars represent the estimates ⟨ℎ⟩ ±𝜎ℎ for 𝛼 = 1.04, 1.2

respectively. The green horizontal line represents ℎ𝑡 .

the covariance from the Hessian of log 𝑃(p|V, ℎ, 𝜷), i.e.

d2 log 𝑃(p|V, ℎ, 𝜷)
d log 𝑝𝑘 d log 𝑝𝑘′

=
1

𝑝𝑘 𝑝𝑘′

[

Yf (𝝁𝝁𝑇 + 1

2
D)Y𝑇

f

]

𝑘𝑘′

(

YfDY𝑇
f

)

𝑘𝑘′

−
{

𝑝0

𝑝𝑘
+ 1

2𝑝𝑘

[

Yf (𝝁𝝁𝑇 + D)Y𝑇
f

]

𝑘𝑘

}

𝛿𝑘𝑘′

− 𝑤smoothT𝑘𝑘′ (30)

Here Yf is the matrix defining the Discrete Hankel Transform, as

given in Jennings et al. (2020).

We justify our use of the Laplace approximation to 𝑃(ℎ|𝛽) later by

comparing the values of ℎ inferred using the Laplace approximation

and other metrics, including the 𝜒2 of the best fit model and MCMC

analysis of fully parametric models, finding good agreement. See

subsection 6.3 and the Appendix for more details.

With the above definitions, we can estimate the true value of

ℎ, ⟨ℎ⟩, as the the value that maximizes 𝑃(ℎ |V, 𝛽). Assuming the

posterior probability behaves like a Gaussian near the maximum,

we can estimate its uncertainty, 𝜎ℎ, by solving log 𝑃(⟨ℎ⟩|V, 𝛽) −
log 𝑃(⟨ℎ⟩ ± 𝜎ℎ |V, 𝛽) = 1/2.

4.3.1 Estimates of ℎ𝑡 for Simulated discs

In order to test how well we can retrieve ℎ𝑡 , we use the aforementioned

set of nine Gaussian discs, the double Gaussian disc and power

law disc. Varying the model’s prior values, we find that changing

𝑤smooth from 10−3 to 10−4 produces no change in ⟨ℎ⟩. We therefore

fix 𝑤smooth to 10−3. We next vary 𝛼 from 1.04 to 1.2, with results

shown in Figure 5.

Figure 5 shows that all ⟨ℎ⟩ estimates are close to the true value,

with four estimates within 1𝜎ℎ of ℎ𝑡 , consistent with the expected

68% for a sample this small. There is no clear trend in aspect ratio

estimation accuracy with respect to the radial structure. Comparing

the results of fits using 𝛼 = 1.04 and 1.2, we find only a marginal

effect on ⟨ℎ⟩ and 𝜎ℎ. The ⟨ℎ⟩ estimate improves for lower 𝛼, moving

closer to the true value; although this effect is not shown for the widest

discs, 𝜎𝑟 = 20 au, it becomes more apparent as the disc narrows.

The size of 𝜎ℎ does not change noticeably with 𝛼. However, for the

thinnest discs (ℎ = 0.01), the uncertainty becomes comparable to the

size of ℎ and thus log 𝑃 does no longer approximate a parabola near

the maximumȷ it decreases from the maximum slower for ℎ < ⟨ℎ⟩
than for ℎ > ⟨ℎ⟩. Therefore, an asymmetric error is found and can

be seen most notably for the disc of width 𝜎𝑟 = 20 au.

Collectively these tests demonstrate that varying ℎ to maximize

log 𝑃(ℎ |V, 𝛽) – provided the other disc properties are correct – can

produce reliable estimates on the aspect ratio of the disc. The estimate

is not affected by the radial structure of the disc, although only

relatively simple discs are tested. The estimated error associated

with ⟨ℎ⟩ reasonably encapsulates the deviation from the true value.

⟨ℎ⟩ is within 1 𝜎ℎ of ℎ𝑡 for the majority of the performed tests and

for 4/9 of the estimates shown in Figure 5, illustrating that 𝜎ℎ is an

appropriate choice of uncertainty. In §6.3 we compare our results on

real data to parametric fits finding a good agreement in the estimates

and derived uncertainties. Finally, we find that increasing the variance

of the noise injected into our mock observations by a factor of 10

causes 𝜎ℎ to scale accordingly, by approximately
√

10. Therefore,

𝜎ℎ increases linearly with the noise in the data.

These and additional tests we performed also show that 𝛼 does

not have a significant effect on ⟨ℎ⟩ for the simulated discs, although

can worsen if 𝛼 is too high and above the recommended range of

values. We note that the discs are simple and only limited testing

is performed, therefore there might be cases in which the behaviour

of ⟨ℎ⟩ is different. For some real debris discs, the choice of 𝛼 does

impact the ability to detect ℎ𝑡 , see §5.

4.3.2 Threshold detection of aspect ratio

Given the parameters of the simulated discs and uv-coverage that we

assume, we conclude that we can retrieve scale heights with frank

as small as 0.02′′ (h=0.01 at 100 au for a system at 50 pc) using

observations with a CLEAN beam of 0.3′′. A detection level this

small is surprising since the vertical FWHM of such a disc would be

0.05′′, and thus only a fraction of the CLEAN beam. The ability of

the algorithm to retrieve a very small ℎ is due to a) frank’s ability

to achieve higher resolution than that in a CLEAN image, and b) the

disc height only needs to be marginally resolved for the algorithm to

find an estimate of ℎ𝑡 , c) our knowledge of the functional form of the

vertical distribution (Gaussian and constant ℎ). The algorithm has

a limit at which it fails to differentiate between a very thin vertical

structure and no vertical structure. Below this limit, 𝑃(ℎ|V, 𝛽) should

not change.

To demonstrate this threshold we estimate ℎ for a subset of the

simple Gaussian discs, calculating the 𝑃(ℎ |V, 𝛽) for ℎ ∈ [10−4, 1],
𝛼 ∈ {1.04, 1.1, 1.6}. Figure 6 shows log 𝑃(ℎ |V, 𝛽) (relative to its

maximum) for this range of aspect ratios and 𝛼 values and 𝜎𝑟 = 5 au.

We find a clear plateau for ℎ below 0.01 for all values of 𝛼 tested. This

demonstrates the existence of a threshold for ℎ (for a given system

and data set), below which 𝑃(ℎ |V, 𝛽) does not change.

Note that previously this interval was centred on ℎ𝑡 , as it is known.

For real discs, no such centering will be possible. The plots of

log 𝑃(ℎ |V, 𝛽) show that if a broad initial range is used, a rough

location of ℎ𝑡 can be estimated. A narrower range, with a higher

resolution, can then be used centred on the initial estimate to obtain

a more precise constraint on ℎ.

4.3.3 Dependency of aspect ratio estimate on inclination

If the inclination of the disc is not precisely known, the true vertical

thickness could be obscured by inclinationȷ assuming an inclination

higher than the true value (i.e. closer to edge-on) would lead to an
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Figure 6. Posterior probability distribution of ℎ, 𝑃 (ℎ |V, 𝛽) , for ℎ𝑡 =

0.1, 𝜎𝑟 = 5 au and relative to its maximum 𝑃 (ℎ∗ |V, 𝛽) . The probability

distribution plateaus for a sufficiently thin disc in which the model cannot

detect changes in the vertical structure; log 𝑃 changes beyond ≈ ℎ = 10−2,

signifying that the model can detect changes in the vertical structure. The

dataset used has a resolution of ∼0.3′′ (Daley et al. 2019). The discs are

simulated at a distance of 50 pc and have a characteristic radius of 100 au,

corresponding to 2′′. The results show the algorithm can detect ℎ even slightly

smaller than the resolution divided by the radius. 𝛼 does not change the de-

tection threshold level.

Table 1. Estimate of 𝑖 (𝑖𝑡 = 90◦) for nine mock Gaussian discs with different

vertical aspect ratios ℎ and radial standard deviations 𝜎𝑟 .

ℎ 𝜎𝑟 (au) ⟨𝑖⟩ (◦)

0.01 5 89.3+1.0
−0.5

0.01 10 89.2+1.2
−0.2

0.01 20 89.6+1.2
−0.4

0.03 5 89.6+1.3
−0.5

0.03 10 89.5+1.4
−0.4

0.03 20 90.0+0.5
−0.5

0.1 5 88.5+1.6
−1.3

0.1 10 88.5+1.8
−1.2

0.1 20 88.9+1.1
−1.0

overestimate of vertical thickness such that the model matches the

observed disc width along the minor axis. Here we want to test how

well we can recover ℎ and 𝑖 when both are unknown. We start by

considering the case that ℎ𝑡 is known and the true inclination, 𝑖𝑡
(90◦ for all simulated discs), is unknown. Similar to §4.3, we can

define 𝑃(𝑖 |V, 𝛽) (where 𝛽 now includes ℎ) and find ⟨𝑖⟩ and 𝜎𝑖 . Table

1 presents the results of estimating inclination for our nine mock

Gaussian discs. For each disc the inclination estimate ⟨𝑖⟩ is accurate

to within 2◦, and in all cases it is within 𝜎𝑖 of 90◦.

The case above is unrealistic since if the inclination is not known

precisely, it is unlikely the aspect ratio would be known beforehand.

In this case where neither is known it is possible to maximize the

posterior probability over both ℎ and 𝑖 simultaneously to obtain esti-

mates, i.e. sample 𝑃(ℎ, 𝑖 |V, 𝛽) in 2D over ℎ and 𝑖. We do this in §5.3

for the disc HD 110058. Here we do a simpler test where we investi-

gate the effect of inputting an incorrect inclination on the recovered

aspect ratio using one of the mock Gaussian discs. The estimate

for ℎ𝑡 is found by the same 𝑃(ℎ |V, 𝛽) maximisation as in §4.3.1,

however the input inclination of 90◦ is now varied; ⟨ℎ⟩ is found for
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Figure 7. The log of the posterior distribution as a function of aspect ratio

and relative to the global maximum probability found at ℎ∗, for a simulated

Gaussian disc with ℎ𝑡 = 0.1, 𝜎𝑟 = 10 au. The three curves correspond to

different inclination assumptionsȷ 𝑖 ∈ {80◦ , 85◦ , 90◦ }. The vertical dashed

lines show the location of the estimate ⟨ℎ⟩ found for each inclination.

𝑖 = 80◦, 85◦, 90◦. Note that the incorrect values of inclination break

the assumption needed to claim that the maximum should be close

to ℎ𝑡 because the model is no longer correct.

Figure 7 shows log 𝑃(ℎ |V, 𝛽) as a function of ℎ for 3 inclinations,

relative to the global maximum of the 3 curves (𝑃(ℎ∗ |V, 𝑖t)), for a

Gaussian disc with ℎ𝑡 = 0.1 and 𝜎𝑟 = 10 au. As the assumed incli-

nation decreases, ⟨ℎ⟩ decreases. Additionally, when the wrong incli-

nation is provided, the log 𝑃(ℎ |V, 𝛽) value at its maximum decreases

significantly. Therefore, a significant decrease in log 𝑃(ℎ |V, 𝛽) (here

it is ∼ 400 when the inclination is incorrect by 10◦) can indicate that

an incorrect geometry has been assumed.

5 APPLYING THE DEPROJECTION ALGORITHM TO

REAL DATA

Here we apply our method to 16 highly inclined debris discs that have

been observed with ALMA with sufficient resolution to constrain

the aspect ratio (at least marginally). The aim is to recover the radial

intensity profile and to constrain the aspect ratio of each disc. To date,

only a few debris discs have had their vertical structure constrained

at (sub-)mm wavelengths. These include AU Mic (Daley et al. 2019;

Vizgan et al. 2022), 𝛽 Pic (Matrà et al. 2019), HD 110058 (Hales

et al. 2022), HD 16743 (Marshall et al. 2023), and marginally for

HD 92945 (Marino et al. 2019) and HR 4796 (Kennedy et al. 2018).

These measurements, however, relied on using parametric models to

fit the visibilities. Recently, Han et al. (2022) constrained the vertical

structure of AU Mic using a non-parametric model in the image

plane.

As part of the REASONS survey, Matră et al. (in prep) collected

and analysed most of the ALMA observations of debris discs and

fit them uniformly using a parametric model consisting of Gaussian

radial and vertical profiles. Based on that sample and results, we

collected the ALMA dust continuum data of the 16 highly inclined

debris discs for which Matră et al. found a constraint on ℎ (rather than

just an upper limit) by fitting a parametric modelȷ HD 9672 (49 Ceti

band 8 data, Higuchi et al. 2019), HD 10647 (𝑞1 Eri band 7 data,

Lovell et al. 2021), HD 15115 (band 6 data, MacGregor et al. 2019),

HD 32297 (band 6 data, MacGregor et al. 2018), HD 61005 (band 6
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50 au

GJ 14

100 au

HD 9672 (49 Ceti)

100 au

HD 10647 (q1 Eri)

100 au

HD 14055 (γ Tri)

50 au

HD 15115

100 au

HD 32297

50 au

HD 35841

100 au

HD 50571

50 au

HD 61005

50 au

HD 92945

50 au

HD 109573 (HR 4796)

100 au

HD 110058

100 au

HD 158352

100 au

HD 161868

50 au

HD 191098

20 au

HD 197481 (AU Mic)

Figure 8. CLEAN images of the sample of studied discs. Blue ellipses at the bottom left of each image show the beam size, while the blue line at the bottom right

provides a scale in au. The large and small ticks along the edges are separated by 5′′ and 1′′, respectively. The grey colours represent emission within ±3𝜎 from

zero.

data, MacGregor et al. 2018), HD 92945 (band 7 data, Marino et al.

2019), HD 109573 (HR 4796, Kennedy et al. 2018), HD 110058

(band 7 data, Hales et al. 2022), HD 197481 (AU Mic band 6 data,

Daley et al. 2019), and data from the REASONS survey of GJ 14,

HD 14055 (𝛾 tri), HD 35841, HD 50571, HD 158352, HD 161868,

HD 191089 (Sepulveda et al. 2019, Matrà et al. in prep). The CLEAN

images of these sources are presented in Figure 8.

The disc inclination and position angle have been well constrained

by Matrà et al. (in prep) for most of these sources through an MCMC

approach combining parametric models, radiative transfer simula-

tions, and Fourier transforming synthetic images to fit the ALMA

visibilities. Matrà et al. (in prep) considered a simple Gaussian radial

profile, which is sufficient for most discs analyzed here, and thus we

adopt these values in our modelling except for HD 92945. This disc

has a more complex radial structure with a gap (Marino et al. 2019),

and thus we use the values derived by Marino (2021) that used the

same approach but considering a more complex radial profile. In one

case, HD 110058, the disc inclination is poorly constrained by the

ALMA observations alone (Hales et al. 2022). Therefore, for this

source, we use the PA derived by Hales et al. and treat the disc in-

clination as a free parameter that also needs to be varied to constrain

ℎ. A 2D sampling of 𝑃(ℎ, 𝑖 |V, 𝛽) is performed in §5.3 and the radial

profiles are analysed. The method for estimating the aspect ratio of

15 of the 16 debris discs is the same as used for the simulated discsȷ

vary ℎ and find the value that maximises 𝑃(ℎ |V, 𝛽). Note that prior to

sampling 𝑃(ℎ|V, 𝛽), we re-scale the uncertainties of the visibilities

by a factor such that the reduced 𝜒2 is equal to 1. This is due to the

uncertainty on the visibilities (or weights) having the right relative

magnitudes, but typically being erroneous by a small factor close to

1.8 (see Marino et al. 2018; Matrà et al. 2020; Marino 2021, for more

information).

The aspect ratios and profiles presented are, in general, retrieved

with frank parameters of 𝛼 = 1.04 and 𝑤smooth = 10−3, and with

the outer radius of the fit 𝑅out ≈ 1.5 − 2× the disc’s outer edge. We

tested a range of parameters to see how the radial features vary and

find that these values produce optimal fits for most of the discs in our

sample. The features recovered in the radial profiles are also robust

to small changes in these parameters. Two exceptions are HD 191089

and HD 110058, where for 𝛼 ≥ 1.04 significant negative artefacts

were produced in the radial profiles. We found more sensible fits
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Table 2. Estimates of ℎ for the 16 analysed discs. The detection levels are

classified as significant when the best fit is more than 3𝜎 from ℎ = 0; marginal

when between 1− 3𝜎; and a limit when it is within 1𝜎 from ℎ = 0, in which

case we quote a 3𝜎 upper limit. The inclination, position angle and stellar flux

values are from Matrà et al. (in prep), with the exception of HD 92945 (Marino

2021) that included a disc gap in its modelling. HD 50571’s inclination is

constrained to > 80◦ , and thus we assume 𝑖 = 85◦ for this system. HD 110058

is analysed in §5.3, and we quote the estimate for 𝑖 > 80◦ . The second column

shows the distance of each target from Gaia Collaboration et al. (2022).

System d 𝑖 PA 𝐹★ Detection 𝛼 ⟨ℎ⟩
System pc [◦] [◦] [𝜇Jy]

AU Mic 9.7 88.4 128.5 320 Significant 1.04 0.020+0.002
−0.002

GJ 14 14.7 64.0 5.0 40 Marginal 1.04 0.050.02
−0.04

HD 9672 57.2 79.1 107.4 100 Significant 1.04 0.050+0.007
−0.007

HD 10647 17.3 77.2 56.8 170 Marginal 1.04 0.0370.007
0.008

HD 14055 35.7 81.1 163.3 0 Limit 1.04 < 0.10

HD 15115 48.8 88.0 98.5 40 Significant 1.04 0.048+0.007
−0.007

HD 32297 129.7 87.0 47.8 80 Significant 1.04 0.08+0.01
−0.01

HD 35841 103.1 84.0 167.0 0 Marginal 1.04 0.15+0.05
−0.06

HD 50571 33.9 85.0 121.9 40 Significant 1.04 0.11+0.02
−0.02

HD 61005 36.5 85.7 70.3 0 Significant 1.04 0.039+0.003
−0.004

HD 92945 21.5 65.4 100.0 35 Marginal 1.04 0.04+0.01
−0.01

HD 110058 130.1 > 80 157.0 5 Significant 1.01 0.210.03
−0.03

HD 109573 70.8 76.5 26.7 70 Significant 1.04 0.052+0.003
−0.003

HD 158352 63.8 81.0 114.0 0 Significant 1.04 0.18+0.02
−0.02

HD 161868 29.7 68.0 57.0 50 Marginal 1.04 0.15+0.03
−0.04

HD 191089 50.1 60.0 73.0 40 Limit 1.02 < 0.19

in these cases when reducing 𝛼 to 1.02 and 1.01, respectively, and

increasing 𝑤smooth to 10−2 for HD 110058.

The final radial profiles are recovered using the estimated aspect

ratio. Note that the flux of the central star, analogous to the simulated

data, is subtracted from the measured visibilities before performing

a fit with frank. The stellar flux is obtained from the best fit value

of a parametric fit by Matrà et al. (in prep) and Marino (2021).

5.1 Estimates of the aspect ratio of debris discs

The estimates of ℎ for the 16 debris discs are in Table 2, including

the estimate for HD 110058, analysed in §5.3. The detection levels

are separated into three classesȷ the result is ‘significant’ if the best

aspect ratio estimate is more than 3𝜎 from ℎ = 0; ‘marginal’ when

between 1 − 3𝜎; and a ‘limit’ estimate when within 1𝜎 from ℎ = 0,

in which case we quote a 3𝜎 upper limit. Using frank we find 9

significant estimates of ℎ, 5 marginal estimates, and only two limit

estimatesȷ HD 14055 and HD 191089. The estimates of ℎ range from

0.02 (AU Mic) to 0.18 (HD 158352) and 0.21 (HD 110058), with

a median aspect ratio amongst significantly and marginally detected

discs of 0.05. These non-limit cases have a median error of 14%, with

the tightest constraint being placed on the aspect ratio of HD 109573,

at only 5%. The two limit estimates for the aspect ratio, HD14055

and HD 191089, have upper limits of 0.1 and 0.19, respectively, that

are consistent with the estimates for the bulk of our sample.

5.1.1 Distribution of vertical thickness

frank reveals a variety of radial and vertical structures in these

sources. The properties of the discs are summarised in Figure 9

(along with the results in §5.3 for HD 110058), where we show

the estimated aspect ratio as a function of the disc’s peak radius
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Figure 9. The estimate of the aspect ratio of each debris disc is shown against

the radius of maximum intensity (top) and fractional width (bottom). Points

are colored by the disc’s fractional width or radius of maximum intensity,

respectively. The peak radius of HD 158352 and HD 50571 is not resolved by

frank, so we use their peak radius and fractional width estimated by fitting a

parametric model (Matrà et al. in prep). These points are marked with squares.

For HD 110058, we use the fit found for 𝑖 = 90◦ , ℎ = 0.22. The "⊙" symbol

represents the classical Kuiper belt with two ℎ values corresponding to its

dynamically cold and hot components (Brown 2001), and fractional width

derived using the L7 synthetic unbiased model of the Kuiper belt (Kavelaars

et al. 2009; Petit et al. 2011).

(colour-coded by its fractional width, top) and as a function of the

disc fractional width (colour-coded by its peak radius, bottom). The

fractional width is defined as

Fractional width =

𝑟+
max/2 − 𝑟−

max/2
𝑟max

, (31)

where 𝑟max is the radius of maximum intensity, and 𝑟±
max/2 are the

radii where the intensity is half the maximum. The "⊙" symbol

represents the classical Kuiper belt with two ℎ values corresponding

to its dynamically cold and hot components (Brown 2001). The

classical Kuiper belt’s peak radius and fractional width are derived

from the L7 synthetic unbiased model of the Kuiper belt (Kavelaars

et al. 2009; Petit et al. 2011).

We find no tight correlation between ℎ and the peak radius or

fractional width. However, our sample has a lack of belts with a large

peak radius and small ℎ and a tentative bimodal distribution of ℎ,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/m

n
ra

s
/s

ta
d
1
8
4
7
/7

2
0
5
5
2
7
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
3



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Deprojecting exoKuiper belts 11

with a valley going from small fractional widths and large aspect

ratios to large fractional widths and small aspect ratios. We note

that our sample is biased since it only contains systems for which

existing observations and parametric modeling led to a constraint in

ℎ (Matrà et al. in prep). Therefore, these results must be taken with

caution. If this remains a trend with a larger and less biased sample, it

could indicate the presence of two separate mechanisms for vertically

stirring debris discs up to different levels. For example, self-stirring

or secular interactions could be responsible for values of ℎ below 0.06

(Matrà et al. 2019), while planet scattering could produce higher ℎ

values (Nesvorný 2015) and at the same time widen belts leading

to high fractional widths. The cold classical Kuiper belt (lower "⊙"

symbol) fits with the low ℎ and low fractional width population.

The hot classical Kuiper belt, however, has a high ℎ value but a

low fractional width making it an outlier of the high ℎ population.

This low fractional width might be misleading as the Kuiper belt has

other hot populations (e.g. scattered and resonant populations) that

have a wider radial distribution and would push the fractional width

to higher values and closer to the high ℎ and high fractional width

population of exoKuiper belts.

5.2 Deprojected radial profiles of debris discs with known

inclination

frank is able to deproject the emission of a variety of edge-on

debris discs. The recovered radial profiles in Figure 10 reveal a range

of features, including gaps and halos (discussed in §5.2.1 and §5.2.2

respectively).

5.2.1 Gap substructures

AU Mic

Figure 10a presents the radial profile for AU Mic recovered by

frank. The majority of AU Mic’s emission originates from a

ring ∼25 au wide, centered at ∼30au. A small second peak in the

intensity is found at ∼10 au, tentatively suggesting a second disc

component and an intermediate gap. This morphology is consistent

with parametric modelling done by Daley et al. (2019) and Marino

(2021). Non-parametric modelling using Rave (Han et al. 2022)

also shows a similar feature.

HD 15115

MacGregor et al. (2019) fit a parametric model to constrain the

radial structure of HD 15115 and find evidence for a gap located

at 58.9 ± 4.5 au of width 13.8 ± 5.6 au, consistent with the radial

profile recovered here. However, the radial profile we obtain with

frank has a ∼3𝜎 negative region just interior to the disc. When we

force frank to a non-negative solution, the gap disappears, and it

must therefore be treated with caution.

HD 92945

Figure 10i shows that the radial structure of HD 92945 features a

gap centred at ∼79 au, with peaks at ∼ 56 au and ∼100 au, and an

outer edge near 150 au. This is in good agreement with Marino et al.

(2019) and Marino (2021), who find evidence for a gap at ∼ 73 ± 3

au and estimate the outer edge to be at ∼140 au.

HD 61005

Figure 10h presents the deprojected radial profile for HD 61005,

with a prominent peak at ∼68 au and a secondary peak at ∼115 au,

which is stable in response variations of 𝑤smooth and 𝛼. Parametric

modelling by MacGregor et al. (2018) shows evidence of a halo for

HD 61005, assuming an outer region of decaying surface density.

The parametric model finds the peak of the distribution at 67 au, in

agreement with the peak recovered here. However, the second peak

in the frank fit differs from the radially decaying power law that

characterises a halo.

5.2.2 Halo substructures

HD 10647

The recovered radial profile for HD 10647 (q1 Eri), presented

in Figure 10c, has a peak at ∼85 au, followed by a fit con-

sistent with a wide decaying region, i.e., a halo (previously

suggested by Lovell et al. (2021)). The small oscillations about this

decaying shape are likely artifacts as found in one of our tests in §4.2.

HD 9672

Figure 10l shows HD 9672’s (49 Ceti) radial profile with a peak at

∼100 au followed by a halo as the brightness profile decays out to

∼320 au. This is consistent with previous analysis by Hughes et al.

(2017) and Higuchi et al. (2019).

5.3 HD 110058 - Analysis of a disc with an uncertain inclination

The inclination of HD 110058 is not known precisely and has been

estimated to be ≳ 80◦ based on near-infrared observations (Kasper

et al. 2015; Esposito et al. 2020). Recent ALMA observations re-

solved CO gas emission and determined a disc inclination that was

likely to be > 80◦ (Hales et al. 2022). As shown in §4.3.3, assuming

an incorrect inclination can yield an erroneous estimate of the aspect

ratio. Therefore, we chose an agnostic approach and aim to fit the

inclination and the aspect ratio jointly. To constrain both parameters

simultaneously, we map the 2D probability distribution 𝑃(ℎ,i|V, 𝛽).
The deprojection algorithm is run and the probability calculated for

a range of ℎ and 𝑖. Figure 11 shows the 2D probability distribution

with contours representing the 68, 95 and 99.7% confidence regions.

The 2D map reveals the degeneracy between these two parameters

(similar to what was found by Hales et al. 2022), as tests of simulated

data demonstrated. The maximum is found at ⟨𝑖⟩ = 75◦, ⟨ℎ⟩ = 0.06,

but this is only marginally better than other values with a wide range

of inclinations up to 90◦ and aspect ratios from 0-0.3. The top and

right panels show the marginalised probability distributions, which

constrain the disc inclination to 𝑖 = 77.8◦+6.5
−2.9 and ℎ = 0.15+0.06

−0.09
(68% confidence). If we impose 𝑖 > 80◦ (i.e. consistent with the

scattered light observations, Kasper et al. 2015; Esposito et al. 2020)

we find ℎ = 0.21 ± 0.03. These findings are consistent with Hales

et al. (2022) that constrained 𝑖 and ℎ using a parametric model and

the same data set.

In order to compare the profiles produced at either end of the

range of viable inclination and aspect ratios, we extract the radial

profile assuming ℎ = 0.06 and 𝑖 = 75◦ (the values that maximize the

posterior probability), and ℎ = 0.22 and 𝑖 = 90◦. The radial profiles

are very similar, displaying large uncertainties as shown in Figure 12.

Both fits show a clear peak at 35 au, with consistent decay. The main

difference between the two profiles is at 𝑟 = 0, where the estimated

intensity is larger for the 𝑖 = 75◦ solution.
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12 James Terrill et al.

(a) AU Mic (b) GJ 14 (c) HD 10647

(d) HD 14055 (e) HD 15115 (f) HD 32297

(g) HD 35841 (h) HD 61005 (i) HD 92945

(j) HD 161868 (k) HD 191089 (l) HD 9672

(m) HD 109573 (n) HD 158352 (o) HD 50571

Figure 10. Recovered intensity radial profiles for real debris discs; 1-3𝜎 confidence intervals are shown as shaded regions.
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Figure 11. HD 110058’s probability distribution as a function of the disc

inclination and ℎ, with darker colours representing the best fit. The contours

represent the 68, 95 and 99.7% confidence regions. The top and right panels

show the marginalised probabilities. The vertical and horizontal dashed lines

represent the 16th, 50th and 84th percentiles.

Figure 12. The deprojected radial profile of HD 110058 for two viable incli-

nation/aspect ratio combinationsȷ 𝑖 = 75◦ , ℎ = 0.06 and 𝑖 = 90◦ , ℎ = 0.22.

The 1 − 3𝜎 uncertainty regions are shaded.

6 DISCUSSION

6.1 Constraining the mass of a stirring body

The estimate of the aspect ratio offers an insight into the spread in

inclination of the orbits of dust particles in the disc, 𝑖rms =

√
2ℎ

(Matrà et al. 2019). The inclination dispersion is directly related to

the relative velocities of the debris, yielding 𝑣rel ∝ 𝑣Kep (𝑟)ℎ, where

𝑣Kep (𝑟) is the Keplerian circular velocity at a distance 𝑟 from the

star. Assuming this inclination dispersion arises from massive bodies

embedded in the disc (self-stirring), we can use ℎ to constrain their

size or mass. This is because a planet embedded in the disc will stir

and excite the planetesimals’/debris’ velocities up to at most its escape

velocity and hence more massive bodies cause greater dynamical

excitation (Safronov 1972; Goldreich et al. 2004; Schlichting 2014).

Therefore, we estimate a rough lower limit on the diameter and

mass (𝐷stir and 𝑀stir) of the stirring bodies by equating its escape

Table 3. Estimates of the Minimum Mass of a Stirring Body. The stellar mass

estimates come fromȷ (1) Daley et al. (2019), (2) Kervella et al. (2022), (3)

Marmier et al. (2013), (4) MacGregor et al. (2019), (5) Cataldi et al. (2020),

(6) Esposito et al. (2018), (7) Desidera et al. (2015), (8) Hughes et al. (2017),

(9) Hales et al. (2022).

Disc M★ (M⊙) 𝑀stir (M⊕) 𝐷stir (km)

AU Mic 0.50 (1) 1.8 × 10−5 480

HD 10647 1.1 (3) 8.2 × 10−5 780

HD 15115 1.4 (4) 2.4 × 10−4 1100

HD 32297 1.6 (5) 1.3 × 10−3 2000

HD 35841 1.3 (6) 1.8 × 10−2 4700

HD 61005 0.98 (2) 1.2 × 10−4 900

HD 92945 0.86 (7) 9.4 × 10−5 820

HD 161868 2.4 (2) 1.3 × 10−2 4200

HD 191089 1.3 (2) 7.5 × 10−3 3500

HD 109573 2.2 (2) 9.0 × 10−4 1700

HD 9672 2.0 (8) 4.3 × 10−4 1400

HD 110058 1.8 (9) 1.7 × 10−1 10000

HD 158352 2.0 (2) 1.4 × 10−2 4300

HD 50571 1.4 (2) 3.6 × 10−3 2800

velocity (
√︁

2𝜋𝐺𝐷2𝜌/3, where 𝜌 is the bulk density) to the relative

velocity of particles (

√︃

1.25𝑒2
rms + 𝑖2rms𝑣Kep). This gives (assuming

𝑒rms = 2𝑖rms, Marino 2021)8

𝐷stir = 590 km

(

ℎ

0.03

)

( 𝑟

100 au

)−1/2 (

𝜌

2 g cm3

)−1/2

(

𝑀★

1 𝑀⊙

)1/2 (32)

𝑀stir = 3.5 × 10−5 𝑀⊕

(

ℎ

0.03

)3 ( 𝑟

100 au

)−3/2 (

𝜌

2 g cm3

)−3/2

(

𝑀★

1 𝑀⊙

)3/2
,

(33)

where 𝑀★ is the stellar mass. Table 3 presents the derived minimum

size of the stirring bodies using the values of ℎ that we found in §5

and the systems’ parameters.

We find that if discs are self-stirred, the bodies stirring the disc

should be at least ∼ 500 km in diameter, and 10 out of the 14 discs

require bodies with diameters above 1000 km. HD 110058 would

require large bodies with a size similar to Mars. The presence of

such large bodies stirring the disc and resupplying the dust levels is

challenging. This is because if we take the dust masses of these discs

(typically in the range 0.01 − 0.5 𝑀⊕) and extrapolate these to such

large sizes with standard size distributions, we find unrealistically

high disc masses (Krivov & Wyatt 2021). This tension could be solved

by a very steep initial size distribution such that most of the disc

mass is in bodies smaller than these dwarf-planets. Alternatively, the

estimated disc thicknesses could arise from planet disc interactions,

e.g. via planet-disc misalignment (Wyatt et al. 1999) or via scattering

(Nesvorný 2015), in which case the discs would not need such large

planetesimals and high masses.

6.2 Constraining the flaring index

So far we have assumed that the vertical aspect ratio ℎ does not

vary as a function of radius. For narrow discs this should not be

8 There is a typo in Equation 7 in Marino (2021). The exponents of 𝑟 , 𝜌 and

𝑀★ should be -1/2, -1/2 and 1/2, respectively.
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Figure 13. HD 9672’s probability distribution as a function of the disc in-

clination and the flaring index with darker colours representing the best fit.

The contours represent the 68, 95 and 99.7% confidence regions. The top and

right panels show the marginalised probabilities. The vertical and horizontal

dashed lines represent the 16th, 50th and 84th percentiles.

an issue, but for wide discs ℎ could vary significantly between the

disc inner and outer edges depending on what stirs the disc. For

example, if the vertical stirring is due to secular interactions with

a misaligned planet, after a few secular timescales the dispersion

of inclinations (and ℎ) will become constant as a function of semi-

major axis (radius) and roughly equal to the original misalignment

(e.g. Dawson et al. 2011). However, if the vertical stirring was due

to massive planetesimals embedded in the disc (self-stirring, Krivov

& Booth 2018) or the secular timescale due to a misaligned planet

was longer than the age of the system, the dispersion of inclinations

and ℎ could vary significantly as a function of radius.

Of the studied discs, HD 9672 (49 Ceti) is the most promising to

study whether ℎ could vary as a function of radius since it has a wide

disc that is very well resolved and detected with a very high signal

to noise. In order to constrain the flaring index, we adapt the scale

height definition to

ℎ(𝑟) = ℎ100 au (𝑟/100 au)𝛾−1, (34)

where ℎ100 au is the aspect ratio at 100 au, and 𝛾 is the flaring index,

which we have assumed it is equal to 1 so far. Values lower than 1

indicate an aspect ratio that decreases with radius, whereas values

larger than 1 correspond to aspect ratios increasing with radius.

We proceed to map the 2D posterior probability distribution as a

function of ℎ100 au and 𝛾. Figure 13 shows the posterior probability

distribution, which has a maximum at ℎ100 au = 0.05 and 𝛾 = 0.9.

The marginalised probabilities constrain ℎ100 au = 0.048+0.010
−0.011

and

𝛾 = 0.79+0.29
−0.35

. This means that HD 9672’s observations are in good

agreement with a constant ℎ (𝛾 = 1), but we cannot rule out cases in

which ℎ increases by a factor ∼2 or decreases by a factor ∼4 between

the disc extent from 100-300 au. Exploring in detail the flaring index

of each one of the discs in our sample is beyond the scope of this

paper and would likely require higher-resolution observations.

6.3 Comparison with previous estimates of ℎ

In order to assess the validity of our estimates of ℎ, we compare

them with the results in the literature obtained by fitting a range of

parametric models to 5 of the discs in the studied sample. These are

AU Mic, HD 10647 (q1 Eri), HD 92945, HD 109573 (HR 4796) and

HD 110058. Overall, we find a good agreement with both estimates

differing by less than 3𝜎. For AU Mic, Marino (2021) found ℎ =

0.0021 ± 0.004 and we found 0.002 ± 0.002. For HD 10647, Lovell

et al. (2021) found ℎ = 0.048 ± 0.004 and we found 0.037+0.008
−0.007

.

For HD 92945, Marino (2021) found ℎ = 0.061 ± 0.020 and we

found ℎ = 0.04 ± 0.01. For HD109573, Kennedy et al. (2018) found

ℎ = 0.038±0.005 and we found ℎ = 0.052±0.003. For HD 110058,

Hales et al. (2022) found ℎ = 0.214±0.024 and we found 0.21±0.03

using the same prior (𝑖 > 80◦). We can also compare our estimate of

ℎ for AU Mic with the non-parametric estimate by Han et al. (2022)

using Rave, and we also find a good agreement. Assuming a similar

inclination of 88.5◦, they derive an average height of 0.8 au, which at

the disc peak radius of ∼ 30 au translates to ℎ = 0.026. This estimate

is consistent with ours.

Finally, to assess if the derived uncertainties are reasonable we

compare them with the literature values quoted above and also with

those derived by Matrà et al. in prep that fitted a parametric model for

all the discs studied here. The latter study fitted a disc model where

the radial and vertical density distribution of dust follows a Gaussian

distribution, i.e. simpler models compared to our non-parametric

radial fits. This procedure and model are the same as in Marino et al.

(2016). We find that our derived uncertainties are consistent with

the ones from the parametric model fits, with ours being only 13%

smaller on average. The slightly smaller uncertainties are likely due

to our approach of using a fixed inclination (except for HD 110058)

as the inclination and ℎ can become degenerate. The uncertainties

in inclination from parametric fits tend to be small (1◦ on average),

which explains why the difference is only 13% on average. Therefore,

we conclude that our uncertainties are (to first order) well estimated.

6.4 Emissivity with a Gaussian distribution

Throughout this paper we have assumed discs have an emissivity that

is approximately Gaussian as a function of height. This requiresȷ

• The dust vertical distribution is Gaussian with scale height𝐻 (𝑟).
This would be the case if orbital inclinations have a Rayleigh dis-

tribution as expected for ensembles of interacting planetesimals and

solids (Ida & Makino 1992). However, there are scenarios where

multiple dynamical populations co-exist at the same radius creating

more complex distributions. This is the case of the Kuiper belt and

𝛽 Pic’s disc (Brown 2001; Matrà et al. 2019). In such a case, a sin-

gle value of ℎ is not appropriate and our derived values could be

dominated by the most excited of the two populations (see model

comparisons in Matrà et al. 2019). Assessing the multiple popula-

tions scenario requires high-resolution observations that can resolve

the disc height. This is not possible in the observations presented

here where 𝐻 is marginally resolved.

• 𝐻 (𝑟) does not vary strongly within the grain size range con-

tributing the most to the disc emission at a single wavelength, which

at millimetre wavelengths corresponds to roughly grain sizes of

0.1 − 10× the wavelength (see Appendix B). Using collisional mod-

els that considered viscous stirring and collisional damping, Pan &

Schlichting (2012) showed that the velocity dispersion may vary with

size in a collisional cascade, leading to significant variations of 𝐻

within the relevant size range. Recent observations of AU Mic’s de-

bris disc support this possibility showing a tentative increase in the

vertical height with wavelengths between 0.45mm and 1.3mm (Viz-

gan et al. 2022); however, the increase with wavelength is inconsistent

with standard collisional models. Moreover, recent observations of

HD 16743 show an almost identical scale height at NIR and millimitre
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Figure 14. Emissivity at 1 mm as a function of height for dust grains with a

size distribution 𝑁 (𝑎)∼𝑎−3.5 from 1 𝜇m to 10 cm and with 𝐻 or inclination

dispersion (𝑖rms) proportional to 𝑎𝑝 . The integrated emissivity has been

normalized to an arbitrary constant and the height 𝑧 has been normalized to

the scale height of 1 mm sized grains. The dust temperature is assumed to be

independent of grain size.

wavelengths (Marshall et al. 2023). If instead, stirring is dominated

by external perturbers (e.g. misaligned or eccentric planet) 𝐻 might

behave differently and possibly remain independent of size. Figure 14

shows the emissivity9 as a function of 𝑧 for four different cases where

𝐻 or the inclination dispersion (𝑖rms) could be independent of grain

size (𝑎) or vary as 𝑎𝑝 as proposed by Pan & Schlichting (2012). For

𝑝 ≳ 0.3 the departure from a Gaussian (blue line) is significant and

thus our assumption would not be valid anymore. It is worth noting

that a non-Gaussian emissivity was inferred for 𝛽 Pic and interpreted

as multiple dynamical populations (Matrà et al. 2019), however a sin-

gle dynamical population with a size dependent 𝑖rms might explain

the observations as well.

• The dust temperature does not vary with height. Since debris

discs are very optically thin the equilibrium temperature of grains is

not a function of height above the midplane.

7 CONCLUSIONS AND SUMMARY

In this paper, we have presented a new approach to simultaneously

deproject the emission of optically thin and axisymmetric circumstel-

lar discs observed by ALMA or any interferometer (even if edge-on)

and constrain their vertical structure. Given their low optical depth,

this is particularly useful for debris disc studies. We first show how

the deprojected visibilities of an optically thin edge-on disc are not

different from a face-on disc. Therefore, methods such as Franken-

stein (Jennings et al. 2020) that can retrieve the radial intensity

profiles of discs directly from the observed visibilities, can also be

used to deproject the emission of edge-on discs as long as they are

axisymmetric and optically thin along the line-of-sight.

Furthermore, we show the effect the disc scale height, 𝐻 (𝑟), has

on the visibilities and how this effect can be incorporated into frank

9 Opacity calculations are presented in Appendix B. Note that here we have

assumed that the dust temperature is independent of size. However, small

grains tend to be hotter which could increase slightly their total contribution

to the emission at mm wavelengths.

assuming the vertical distribution is Gaussian. We develop a new

extension to frank in which 𝐻 (𝑟) is an input, and using simulated

observations we show how the model can accurately retrieve the

radial profile if 𝐻 (𝑟) is known. More importantly, 𝐻 (𝑟) is usually

unknown and directly linked to the dispersion of orbital inclina-

tions, hence it is a key property to constrain the level of dynamical

excitation. Therefore, we demonstrate how sampling the posterior

distribution with a grid allows us to constrain 𝐻 (𝑟) if it is parame-

terised (e.g. assuming ℎ = 𝐻/𝑟 is constant). Our simulations show

the algorithm can constrain the vertical thickness even in extreme

cases where the CLEAN beam is only a tenth of 𝐻, as long as the ob-

servations have a high signal-to-noise and the disc inclination is well

known. This new approach to retrieve the radial profile and constrain

the vertical thickness of discs with frank provides two major bene-

fits versus parametric models. Firstly, no functional form is assumed

for the radial profile. Secondly, frank can produce a constraint for

both the vertical and radial structure of disc in minutes, far faster

than the hours typically taken by MCMC methods, due to their need

to sample several parameters and Fourier transform a model several

times.

We applied this new method to 16 highly inclined debris discs

observed by ALMA and successfully constrained the aspect ratio,

ℎ, for discs with both known and uncertain inclinations (sampling

the posterior distribution with 1 (ℎ) or 2 free parameters (ℎ and 𝑖 -

Table 2 and §5.3). The aspect ratios of the debris discs in our sample

range from 0.020±0.002 to 0.22±0.03 (for AU Mic and HD 110058

respectively). We find a tentative correlation between the aspect ratio

and fractional width of discs (Figure 9 bottom panel), indicating a

possible bimodal distribution where discs with large fractional widths

tend to have larger ℎ values and vice versa. If true this could mean that

disc stirring could be responsible for the large widths of some discs.

This new extension to frank also allows us to constrain how the

aspect ratio might vary as a function of the disc’s radius as expected

in some dynamical scenarios. We apply this to HD 9672 (49 Ceti), a

wide disc with a very high signal-to-noise ALMA observation, and

find a result consistent with ℎ being constant with radius (although

the flaring index is still highly uncertain). We also compare our

results with the ℎ estimates derived from parametric models applied

to the same data, finding a good agreement in both the estimates and

derived uncertainties.

Assuming that the discs are self-stirred, the values of ℎ we derive

require planetesimals with masses of at least 2 × 10−5 𝑀⊕ and di-

ameters of at least 500 km. Such large planetesimals would imply

unphysically large disc masses unless the size distribution was very

steep and the disc mass dominated by smaller planetesimals. Alter-

natively, the discs could be stirred by planets via scattering or secular

interactions.

Finally, the deprojected radial profiles reveal a range of structures

at a higher resolution than previous images. These include halos (i.e.

smoothly decreasing surface brightness) around HD 10647 (q1 Eri)

and HD 9672 (49 Ceti), and gaps around HD 15115, HD 92945 and

HD 61005. The latter had not been inferred before (see subfigure

10h) due to the comparatively lower resolution of CLEAN images.

Instead, the second peak that we found was previously interpreted as

a halo. This emphasizes the benefits of using frank.
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APPENDIX A: STATISTICAL ESTIMATION OF THE DISC

SCALE HEIGHT

In this paper we have used the (Laplace-approximated) Bayesian ev-

idence, 𝑃(ℎ |V, 𝛽), to determine the disc scale height. A comparison

between the estimates produced via the Bayesian evidence and pre-

vious estimates of the scale height derived from parametric fits to

the same data (§6.3) show good agreement. Here we argue that the

inferred values of the disc scale height are unlikely to be sensitive

to the precise details of the metric used. An alternative, frequentist,

approach to determining the best fit is to use the 𝜒2 metric to estimate
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Figure A1. A comparison of two different metrics for determining the best

fitting disc aspect ratio applied to the double ring test problem. The vertical

lines show the best-fitting value and the coloured bands the 1-𝜎 confidence

interval around the best fit. The black-dashed line is the ground truth value.

Both metrics are similar, producing best fit values that agree to within 1-𝜎.

the disc scale height. I.e.,

𝜒2
=

∑︁

𝑖

[𝑉𝑖 −𝑉𝑠 (I, ℎ)𝑖]2

𝜎2
𝑖

= −2 log 𝑃(V |I, ℎ) + const. (A1)

where 𝑤𝑖 = 1/𝜎2
𝑖

and last equality follows because the noise on

the visibility data is approximately Gaussian. Finding the parameters

(brightness profile, scale height) that minimize the 𝜒2 therefore is

equivalent to finding the model for which the data is most probable.

We show a comparison between (Laplace-approximated) Bayesian

evidence and exp(−𝜒2/2) in Figure A1, from which it is clear that

a frequentist and Bayesian interpretation should lead to similar in-

ferences. The explanation as to why the two metrics agree closely is

simply that the variation in the Bayesian evidence with ℎ is dominated

by the change in the 𝜒2.

APPENDIX B: GRAIN SIZES THAT DOMINATE THE

EMISSION

Here we want to estimate the contribution of different grains sizes to

the emission at a given wavelength (e.g. as done by Wyatt & Dent

2002). To do this we assume a size distribution from 1 𝜇m up to

10 cm with an exponent of -3.5 and focus on a wavelength of 1 mm

(representative of the wavelengths studied here). We use Mie Theory

to compute the absorption opacity (Bohren & Huffman 1983) and

we assume grains have an astrosilicate composition (Draine 2003).

Figure B1 shows the absorption opacity at 1 mm as a function of grain

size and weighted by the mass distribution with logarithmic size bins,

i.e. the contribution from each grain size to the total absorbing and

emitting area as a proxy for the emission (assuming temperatures do

not vary significantly for grains larger than ∼0.1 mm). We find that

90% of the emission (grey area) arises from grains sizes from 0.12 to

15 times the wavelength. This highlights how the emission at ALMA

wavelengths is dominated by grain sizes spanning roughly 2 orders

of magnitude and centered at the wavelength.
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Figure B1. Absorption opacity at 1 mm as a function of grain size and

weighted by the mass distribution with logarithmic size bins (blue line in

arbitrary units). The orange curve shows the cumulative absorption cross-

section. The grey shaded region and vertical dotted line represent the grain

sizes contributing 90% of the emission and the median, respectively.
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