1,054 research outputs found

    The role of land cover change in Arctic-Boreal greening and browning trends

    Get PDF
    Many studies have used time series of satellite-derived vegetation indices to identify so-called greening and browning trends across the northern high-latitudes and to suggest that the productivity of Arctic-Boreal ecosystems is changing in response to climate forcing at local and continental scales. However, disturbances that alter land cover are prevalent in Arctic-Boreal ecosystems, and changes in Arctic-Boreal land cover, which complicate interpretation of trends in vegetation indices, have mostly been ignored in previous studies. Here we use a new land cover change dataset derived from Landsat imagery to explore the extent to which land cover and land cover change influence trends in the normalized difference vegetation index (NDVI) over a large (3.76 M km2) area of NASA's Arctic Boreal Vulnerability Experiment, which spans much of northwestern Canada and Alaska. Between 1984 and 2012, 21.2% of the study domain experienced land cover change and 42.7% had significant NDVI trends. Land cover change occurred in 27.6% of locations with significant NDVI trends during this period and resulted in greening and browning rates 48%–128% higher than in areas of stable land cover. While the majority of land cover change areas experienced significant NDVI trends, more than half of areas with stable land cover did not. Further, the extent and magnitude of browning and greening trends varied substantially as a function of land cover class and land cover change type. Forest disturbance from fire and timber harvest drove over one third of statistically significant NDVI trends and created complex mosaics of recent forest loss (as browning) and post-disturbance recovery (as greening) at both landscape and continental scale. Our results demonstrate the importance of land cover changes in highly disturbed high-latitude ecosystems for interpreting trends of NDVI and productivity across multiple spatial scales.Published versio

    A global fingerprint of macro-scale changes in urban structure from 1999 to 2009

    Get PDF
    Urban population now exceeds rural population globally, and 60–80% of global energy consumption by households, businesses, transportation, and industry occurs in urban areas. There is growing evidence that built-up infrastructure contributes to carbon emissions inertia, and that investments in infrastructure today have delayed climate cost in the future. Although the United Nations statistics include data on urban population by country and select urban agglomerations, there are no empirical data on built-up infrastructure for a large sample of cities. Here we present the first study to examine changes in the structure of the world\u27s largest cities from 1999 to 2009. Combining data from two space-borne sensors—backscatter power (PR) from NASA\u27s SeaWinds microwave scatterometer, and nighttime lights (NL) from NOAA\u27s defense meteorological satellite program/operational linescan system (DMSP/OLS)—we report large increases in built-up infrastructure stock worldwide and show that cities are expanding both outward and upward. Our results reveal previously undocumented recent and rapid changes in urban areas worldwide that reflect pronounced shifts in the form and structure of cities. Increases in built-up infrastructure are highest in East Asian cities, with Chinese cities rapidly expanding their material infrastructure stock in both height and extent. In contrast, Indian cities are primarily building out and not increasing in verticality. This new dataset will help characterize the structure and form of cities, and ultimately improve our understanding of how cities affect regional-to-global energy use and greenhouse gas emissions

    Mapping Crop Cycles in China Using MODIS-EVI Time Series

    Get PDF
    As the Earth’s population continues to grow and demand for food increases, the need for improved and timely information related to the properties and dynamics of global agricultural systems is becoming increasingly important. Global land cover maps derived from satellite data provide indispensable information regarding the geographic distribution and areal extent of global croplands. However, land use information, such as cropping intensity (defined here as the number of cropping cycles per year), is not routinely available over large areas because mapping this information from remote sensing is challenging. In this study, we present a simple but efficient algorithm for automated mapping of cropping intensity based on data from NASA’s (NASA: The National Aeronautics and Space Administration) MODerate Resolution Imaging Spectroradiometer (MODIS). The proposed algorithm first applies an adaptive Savitzky-Golay filter to smooth Enhanced Vegetation Index (EVI) time series derived from MODIS surface reflectance data. It then uses an iterative moving-window methodology to identify cropping cycles from the smoothed EVI time series. Comparison of results from our algorithm with national survey data at both the provincial and prefectural level in China show that the algorithm provides estimates of gross sown area that agree well with inventory data. Accuracy assessment comparing visually interpreted time series with algorithm results for a random sample of agricultural areas in China indicates an overall accuracy of 91.0% for three classes defined based on the number of cycles observed in EVI time series. The algorithm therefore appears to provide a straightforward and efficient method for mapping cropping intensity from MODIS time series data

    Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product

    Get PDF
    Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatiotemporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of variance suggesting that the algorithm is reliable and robust, except in the tropics where some systematic differences are observed. Finally, comparisons with ground data suggest that the algorithm is performing well, but that end of season metrics associated with vegetation senescence and dormancy have higher uncertainties than start of season metrics

    A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites

    Get PDF
    Vegetation phenology is a key control on water, energy, and carbon fluxes in terrestrial ecosystems. Because vegetation canopies are heterogeneous, spatially explicit information related to seasonality in vegetation activity provides valuable information for studies that use eddy covariance measurements to study ecosystem function and land-atmosphere interactions. Here we present a land surface phenology (LSP) dataset derived at 3 m spatial resolution from PlanetScope imagery across a range of plant functional types and climates in North America. The dataset provides spatially explicit information related to the timing of phenophase changes such as the start, peak, and end of vegetation activity, along with vegetation index metrics and associated quality assurance flags for the growing seasons of 2017-2021 for 10 × 10 km windows centred over 104 eddy covariance towers at AmeriFlux and National Ecological Observatory Network (NEON) sites. These LSP data can be used to analyse processes controlling the seasonality of ecosystem-scale carbon, water, and energy fluxes, to evaluate predictions from land surface models, and to assess satellite-based LSP products.1702627 - NSF | BIO | Division of Environmental Biology; 1702627 - NSF | BIO | Division of Environmental Biology (DEB); 80NSSC18K0334 - National Aeronautics and Space Administration (NASA); 1702697 - NSF | BIO | Division of Environmental Biology; 1702697 - NSF | BIO | Division of Environmental Biology (DEB); SC0016011 - U.S. Department of Energy; 80NSSC18K0334 - National Aeronautics and Space Administration; 1065029 - NSF | BIO | Division of Environmental Biology (DEB); SC0016011 - U.S. Department of Energy (DOE); 1065029 - NSF | BIO | Division of Environmental BiologyPublished versio

    Using time series of MODIS land surface phenology to model temperature and photoperiod controls on spring greenup in North American deciduous forests

    Get PDF
    The timing of leaf emergence in temperate and boreal forests is changing, which has profound implications for a wide array of ecosystem processes and services. Spring phenology models, which have been widely used to predict the timing of leaf emergence, generally assume that a combination of photoperiod and thermal forcing control when leaves emerge. However, the exact nature and magnitude of how photoperiod and temperature individually and jointly control leaf emergence is the subject of ongoing debate. Here we use a continuous development model in combination with time series of land surface phenology measurements from MODIS to quantify the relative importance of photoperiod and thermal forcing in controlling the timing of canopy greenup in eastern temperate and boreal forests of North America. The model accurately predicts biogeographic and interannual variation in the timing of greenup across the study region (median RMSE = 4.6 days, median bias = 0.30 days). Results reveal strong biogeographic variation in the period prior to greenup when temperature and photoperiod influence greenup that covaries with the importance of photoperiod versus thermal controls. Photoperiod control on leaf emergence is dominant in warmer climates, but exerts only modest influence on the timing of leaf emergence in colder climates. Results from models estimated using ground-based observations of cloned lilac are consistent with those from remote sensing, which supports the realism of remote sensing-based models. Overall, results from this study suggest that apparent changes in the sensitivity of trees to temperature are modest and reflect a trade-off between decreased sensitivity to temperature and increased photoperiod control, and identify a transition in the relative importance of temperature versus photoperiod near the 10 °C isotherm in mean annual temperature. This suggests that the timing of leaf emergence will continue to move earlier as the climate warms, and that the magnitude of change will be more pronounced in colder regions with mean annual temperatures below 10 °C.Accepted manuscrip

    A specious unlinking strategy

    Get PDF
    We show that the following unlinking strategy does not always yield an optimal sequence of crossing changes: first split the link with the minimal number of crossing changes, and then unknot the resulting components

    Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America

    Get PDF
    The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods.EEA SaltaFil: Graesser, Jordan. Boston University. Department of Earth and Environment; Estados UnidosFil: Stanimirova, Radost. Boston University. Department of Earth and Environment; Estados UnidosFil: Tarrio, Katelyn. Boston University. Department of Earth and Environment; Estados UnidosFil: Copati, Esteban J. Bolsa de Cereales (Buenos Aires); ArgentinaFil: Volante, J. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; ArgentinaFil: Verón, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Verón, Sebastian. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Verón, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Banchero, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Elena, Hernan Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; ArgentinaFil: Abelleyra, D. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Friedl, Mark A. Boston University. Department of Earth and Environment; Estados Unido

    A Global Analysis of the Spatial and Temporal Variability of Usable Landsat Observations at the Pixel Scale

    Get PDF
    The Landsat program has the longest collection of moderate-resolution satellite imagery, and the data are free to everyone. With the improvements of standardized image products, the flexibility of cloud computing platforms, and the development of time series approaches, it is now possible to conduct global-scale analyses of time series using Landsat data over multiple decades. Efforts in this regard are limited by the density of usable observations. The availability of usable Landsat Tier 1 observations at the scale of individual pixels from the perspective of time series analysis for land change monitoring is remarkably variable both in space (globally) and time (1985–2020), depending most immediately on which sensors were in operation, the technical capabilities of the mission, and the acquisition strategies and objectives of the satellite operators (e.g., USGS, commercial company) and the international ground receiving stations. Additionally, analysis of data density at the pixel scale allows for the integration of quality control data on clouds, cloud shadows, and snow as well as other properties returned from the atmospheric correction process. Maps for different time periods show the effect of excluding observations based on the presence of clouds, cloud shadows, snow, sensor saturation, hazy observations (based on atmospheric opacity), and lack of aerosol optical depth information. Two major discoveries are: 1) that filtering saturated and hazy pixels is helpful to reduce noise in the time series, although the impact may vary across different continents; 2) the atmospheric opacity band needs to be used with caution because many images are removed when no value is given in this band, when many of those observations are usable. The results provide guidance on when and where time series analysis is feasible, which will benefit many users of Landsat data
    • …
    corecore