40 research outputs found

    Endothelin-1-induced alterations in phenylephrine-induced contractile responses are largely additive in physiologically diverse rabbit vasculature

    Get PDF
    ABSTRACT Endothelin-1 (ET-1) is an important modulator of vasomotor tone that is thought to participate in the etiology of cardiovascular disease by virtue of its ability to amplify the contractile responses of vascular smooth muscle cells to the effects of other vasoactive agents. Despite this fact, few studies have quantitated the expected contribution of ET-1 to the enhanced contractile responses elicited in the presence of another spasmogen. As a first step in this direction, ET-1 and phenylephrine (PE) were used to evaluate the effects of co-activation of the ET A/B or alpha-1 adrenergic receptors, respectively, on contractile responses in isolated rings of rabbit aorta, mesenteric and femoral artery, or strips of corporal tissue. Cumulative steady-state concentration-response curves (CRCs) were constructed to PE alone before the construction of a CRC to ET-1 alone, or a mixture of PE and ET-1 using a previously described drug concentration paradigm. Computer fits of the logistic equation to CRC data revealed that in all vascular tissues examined, the partial substitution of PE with ET-1 was associated with a significant vessel-dependent Ï·3-to 30-fold leftward shift in the CRC (P Ïœ .01, Student's t test for paired samples), as judged by a significant increase in the pEC 50 (negative logarithm of the concentration of drug that elicits one-half of the calculated maximal effect), in the absence of any detectable effect on the calculated maximal contractile response (E max ) or the slope factor (). A theoretical CRC constructed using the Pö ch and Holzmann method for equiactive substitution demonstrated that the responses to mixtures of PE and ET-1 were often the result of simple additivity of agonist effects in these preparations, and thus, were "expected" based on detailed knowledge of the individual effects of these two agonists. Regardless of the precision of the Poch and Holzmann CRC in predicting the effects of this drug mixture in these vascular tissues, comparison of the "expected" contractile response with the "observed" response represents an important first step toward establishing a more uniform nomenclature for describing the physiological/pathophysiological effects of mixtures of drugs on diverse vasculature

    Cannabis-induced hypodopaminergic anhedonia and cognitive decline in humans: Embracing putative induction of dopamine homeostasis

    Get PDF
    Over years, the regular use of cannabis has substantially increased among young adults, as indicated by the rise in cannabis use disorder (CUD), with an estimated prevalence of 8. 3% in the United States. Research shows that exposure to cannabis is associated with hypodopaminergic anhedonia (depression), cognitive decline, poor memory, inattention, impaired learning performance, reduced dopamine brain response-associated emotionality, and increased addiction severity in young adults. The addiction medicine community is increasing concern because of the high content of delta-9-tetrahydrocannabinol (THC) currently found in oral and vaping cannabis products, the cognitive effects of cannabis may become more pronounced in young adults who use these cannabis products. Preliminary research suggests that it is possible to induce \u27dopamine homeostasis,\u27 that is, restore dopamine function with dopamine upregulation with the proposed compound and normalize behavior in chronic cannabis users with cannabis-induced hypodopaminergic anhedonia (depression) and cognitive decline. This psychological, neurobiological, anatomical, genetic, and epigenetic research also could provide evidence to use for the development of an appropriate policy regarding the decriminalization of cannabis for recreational use

    Frequency of the dopamine receptor D3 (rs6280) vs. opioid receptor ”1 (rs1799971) polymorphic risk alleles in patients with opioid use disorder: A preponderance of dopaminergic mechanisms?

    Get PDF
    While opioids are a powerful class of drugs that inhibit transmission of pain signals, their use is tarnished by the current epidemic of opioid use disorder (OUD) and overdose deaths. Notwithstanding published reports, there remain gaps in our knowledge of opioid receptor mechanisms and their role in opioid seeking behavior. Thus, novel insights into molecular, neurogenetic and neuropharmacological bases of OUD are needed. We propose that an addictive endophenotype may not be entirely specific to the drug of choice but rather may be generalizable to altered brain reward circuits impacting net mesocorticolimbic dopamine release. We suggest that genetic or epigenetic alterations across dopaminergic reward systems lead to uncontrollable self-administration of opioids and other drugs. For instance, diminished availability via knockout of dopamine D3 receptor (DRD3) increases vulnerability to opioids. Building upon this concept via the use of a sophisticated polymorphic risk analysis in a human cohort of chronic opioid users, we found evidence for a higher frequency of polymorphic DRD3 risk allele (rs6280) than opioid receptor ”1 (rs1799971). In conclusion, while opioidergic mechanisms are involved in OUD, dopamine-related receptors may have primary influence on opioid-seeking behavior in African Americans. These findings suggest OUD-targeted novel and improved neuropharmacological therapies may require focus on DRD3-mediated regulation of dopaminergic homeostasis

    Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain‐containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross‐linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane‐bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine‐induced hippocampal inward currents in rat brain slices and decreases nicotine‐induced extracellular signal‐regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR‐mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post‐natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. [Image: see text] Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine‐induced ERK phosphorylation and attenuates nicotine‐induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain

    Neuropharmacological and neurogenetic correlates of opioid use disorder (OUD) as a function of ethnicity: Relevance to precision addiction medicine

    No full text
    Background: Over 100 people die daily from opioid overdose and $78.5B per year is spent on treatment efforts, however, the real societal cost is multifold greater. Alternative strategies to eradicate/manage drug misuse and addiction need consideration. The perception of opioid addiction as a social/criminal problem has evolved to evidence-based considerations of them as clinical disorders with a genetic basis. We present evaluations of the genetics of addiction with ancestry-specific risk profiles for consideration. Objective: Studies of gene variants associated with predisposition to substance use disorders (SUDs) are monolithic, and exclude many ethnic groups, especially Hispanics and African Ameri-cans. We evaluate gene polymorphisms that impact brain reward and predispose individuals to opioid addictions, with a focus on the disparity of research which includes individuals of African and Hispanic descent. Methodology: PubMed and Google Scholar were searched for: Opioid Use Disorder (OUD), Ge-nome-wide association studies (GWAS); genetic variants; polymorphisms, restriction fragment length polymorphisms (RFLP); genomics, epigenetics, race, ethnic group, ethnicity, ancestry, Cau-casian/White, African American/Black, Hispanic, Asian, addictive behaviors, reward deficiency syndrome (RDS), mutation, insertion/deletion, and promotor region. Results: Many studies exclude non-White individuals. Studies that include diverse populations report ethnicity-specific frequencies of risk genes, with certain polymorphisms specifically associated with Caucasian and not African-American or Hispanic susceptibility to OUD or SUDs, and vice versa. Conclusion: To adapt precision medicine-based addiction management in a blended society, we propose that ethnicity/ancestry-informed genetic variations must be analyzed to provide real preci-sion-guided therapeutics with the intent to attenuate this uncontrollable fatal epidemic

    Prenatal Nicotine and Maternal Deprivation Stress De-Regulate the Development of CA1, CA3, and Dentate Gyrus Neurons in Hippocampus of Infant Rats

    Get PDF
    <div><p>Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.</p></div
    corecore