130 research outputs found

    A frameshift insertion in SGK3 leads to recessive hairlessness in Scottish Deerhounds : a candidate gene for human alopecia conditions

    Get PDF
    Hairlessness is a breed-specific feature selected for in some dog breeds but a rare abnormality in some others such as Scottish Deerhounds (SD). In SDs, the affected puppies are born with sparse hair but lose it within the first 2months leaving the dogs completely hairless. The previous studies have implicated variants in FOXI3 and SGK3 in hairlessness; however, the known variants do not explain hairlessness in all breeds such as SDs. We investigated the genetic cause in 66 SDs, including a litter with two hairless dogs. We utilized a combined approach of genome-wide homozygosity mapping and whole-genome sequencing of a hairless SD followed by recessive filtering according to a recessive model against 340 control genomes. Only two homozygous-coding variants were discovered in the homozygosity regions, including a 1-bp insertion in exon 2 of SGK3. This results in a predicted frameshift and very early truncation (49/490 amino acids) of the SGK3 protein. Additional screening of the recessive variant demonstrated a full segregation with the hairlessness and a 12% carrier frequency in the SD breed. The variant was not found in the related Irish Wolfhound breed. This study identifies the second hairless variant in the SGK3 gene in dogs and further highlights its role as a candidate gene for androgen-independent hair loss or alopecia in human.Peer reviewe

    Multi-omic analyses in Abyssinian cats with primary renal amyloid deposits

    Get PDF
    The amyloidoses constitute a group of diseases occurring in humans and animals that are characterized by abnormal deposits of aggregated proteins in organs, affecting their structure and function. In the Abyssinian cat breed, a familial form of renal amyloidosis has been described. In this study, multi-omics analyses were applied and integrated to explore some aspects of the unknown pathogenetic processes in cats. Whole-genome sequences of two affected Abyssinians and 195 controls of other breeds (part of the 99 Lives initiative) were screened to prioritize potential disease-associated variants. Proteome and miRNAome from formalin-fixed paraffin-embedded kidney specimens of fully necropsied Abyssinian cats, three affected and three non-amyloidosis-affected were characterized. While the trigger of the disorder remains unclear, overall, (i) 35,960 genomic variants were detected; (ii) 215 and 56 proteins were identified as exclusive or overexpressed in the affected and control kidneys, respectively; (iii) 60 miRNAs were differentially expressed, 20 of which are newly described. With omics data integration, the general conclusions are: (i) the familial amyloid renal form in Abyssinians is not a simple monogenic trait; (ii) amyloid deposition is not triggered by mutated amyloidogenic proteins but is a mix of proteins codified by wild-type genes; (iii) the form is biochemically classifiable as AA amyloidosis.Peer reviewe

    Canine models of human amelogenesis imperfecta: identification of novel recessive ENAM and ACP4 variants

    Get PDF
    Amelogenesis imperfecta (AI) refers to a genetically and clinically heterogeneous group of inherited disorders affecting the structure, composition, and quantity of tooth enamel. Both non-syndromic and syndromic forms of AI have been described and several genes affecting various aspects of the enamel physiology have been reported. Genetically modified murine models of various genes have provided insights into the complex regulation of proper amelogenesis. Non-syndromic AI occurs spontaneously also in dogs with known recessive variants in ENAM and SLC24A4 genes. Unlike rodents with a reduced dentition and continuously erupting incisors, canine models are valuable for human AI due to similarity in the dental anatomy including deciduous and permanent teeth. We have performed a series of clinical and genetic analyses to investigate AI in several breeds of dogs and describe here two novel recessive variants in the ENAM and ACP4 genes. A fully segregating missense variant (c.716C>T) in exon 8 of ENAM substitutes a well-conserved proline to leucine, p.(Pro239Leu), resulting in a clinical hypomineralization of teeth. A 1-bp insertion in ACP4 (c.1189dupG) is predicted to lead to a frameshift, p.(Ala397Glyfs), resulting in an abnormal C-terminal part of the protein, and hypoplastic AI. The ENAM variant was specific for Parson Russell Terriers with a carrier frequency of 9%. The ACP4 variant was found in two breeds, Akita and American Akita with a carrier frequency of 22%. These genetic findings establish novel canine models of human AI with a particular interest in the case of the ACP4-deficient model, since ACP4 physiology is poorly characterized in human AI. The affected dogs could also serve as preclinical models for novel treatments while the breeds would benefit from genetic tests devised here for veterinary diagnostics and breeding programs.Peer reviewe

    An across-breed validation study of 46 genetic markers in canine hip dysplasia

    Get PDF
    BackgroundCanine hip dysplasia (CHD) is a common disease, with a complex genetic background. Dogs with severe CHD sometimes also suffer from osteoarthritis (OA), an inflammatory, often painful and incurable condition. Previous studies have reported breed-specific genetic loci associated with different hip dysplasia and OA phenotypes. However, the independent replication of the known associations within or across breeds has been difficult due to variable phenotype measures, inadequate sample sizes and the existence of population specific variants.ResultsWe execute a validation study of 46 genetic markers in a cohort of nearly 1600 dogs from ten different breeds. We categorize the dogs into cases and controls according to the hip scoring system defined by the Federation Cynologique Internationale (FCI). We validate 21 different loci associated on fourteen chromosomes. Twenty of these associated with CHD in specific breeds, whereas one locus is unique to the across-breed study. We show that genes involved in the neddylation pathway are enriched among the genes in the validated loci. Neddylation contributes to many cellular functions including inflammation.ConclusionsOur study successfully replicates many loci and highlights the complex genetic architecture of CHD. Further characterisation of the associated loci could reveal CHD-relevant genes and pathways for improved understanding of the disease pathogenesis.Peer reviewe

    Myotonia congenita in a Labrador Retriever with truncated CLCN1

    Get PDF
    An eight week old Labrador Retriever puppy presented with stiff-legged robotic gait. Abnormal gait was most evident after rest and improved with prolonged activity. On occasions, initiation of sudden movements would result in collapse with rigidity of the trunk and stiff extended limbs for several seconds. Other clinical signs were excitement-induced upper airway stridor and oropharyngeal dysphagia. Myotonia congenita was diagnosed based on clinical signs, abundant myotonic discharges on electromyography and exclusion of structural myopathies on histology. Whole exome sequencing revealed a case-specific homozygous variant in CLCN1, c.2275A > T resulting in a premature stop codon, p.R759X. The CLCN1 variant was absent from the genomes of 127 Labrador Retriever controls and 474 control dogs from other breeds. This study expands the spectrum of identified canine CLCN1 mutations and the list of affected breeds in myotonia congenita and highlights the potential value of dogs as translational large animal models of human genetic diseases. (C) 2018 The Authors. Published by Elsevier B.V.Peer reviewe

    Genetic dissection of canine hip dysplasia phenotypes and osteoarthritis reveals three novel loci

    Get PDF
    Background Hip dysplasia and osteoarthritis continue to be prevalent problems in veterinary and human medicine. Canine hip dysplasia is particularly problematic as it massively affects several large-sized breeds and can cause a severe impairment of the quality of life. In Finland, the complex condition is categorized to five classes from normal to severe dysplasia, but the categorization includes several sub-traits: congruity of the joint, Norberg angle, subluxation degree of the joint, shape and depth of the acetabulum, and osteoarthritis. Hip dysplasia and osteoarthritis have been proposed to have separate genetic etiologies. Results Using Federation Cynologique Internationale -standardized ventrodorsal radiographs, German shepherds were rigorously phenotyped for osteoarthritis, and for joint incongruity by Norberg angle and femoral head center position in relation to dorsal acetabular edge. The affected dogs were categorized into mild, moderate and severe dysplastic phenotypes using official hip scores. Three different genome-wide significant loci were uncovered. The strongest candidate genes for hip joint incongruity were noggin (NOG), a bone and joint developmental gene on chromosome 9, and nanos C2HC-type zinc finger 1 (NANOS1), a regulator of matrix metalloproteinase 14 (MMP14) on chromosome 28. Osteoarthritis mapped to a long intergenic region on chromosome 1, between genes encoding for NADPH oxidase 3 (NOX3), an intriguing candidate for articular cartilage degradation, and AT-rich interactive domain 1B (ARID1B) that has been previously linked to joint laxity. Conclusions Our findings highlight the complexity of canine hip dysplasia phenotypes. In particular, the results of this study point to the potential involvement of specific and partially distinct loci and genes or pathways in the development of incongruity, mild dysplasia, moderate-to-severe dysplasia and osteoarthritis of canine hip joints. Further studies should unravel the unique and common mechanisms for the various sub-traits.Peer reviewe

    A homozygous missense variant in the alkaline phosphatase gene ALPL is associated with a severe form of canine hypophosphatasia

    Get PDF
    Inherited skeletal disorders affect both humans and animals. In the current study, we have performed series of clinical, pathological and genetic examinations to characterize a previously unreported skeletal disease in the Karelian Bear Dog (KBD) breed. The disease was recognized in seven KBD puppies with a variable presentation of skeletal hypomineralization, growth retardation, seizures and movement difficulties. Exome sequencing of one affected dog revealed a homozygous missense variant (c. 1301T > G; p. V434G) in the tissue non-specific alkaline phosphatase gene, ALPL. The identified recessive variant showed full segregation with the disease in a cohort of 509 KBDs with a carrier frequency of 0.17 and was absent from 303 dogs from control breeds. In humans, recessive and dominant ALPL mutations cause hypophosphatasia (HPP), a metabolic bone disease with highly heterogeneous clinical manifestations, ranging from lethal perinatal hypomineralization to a relatively mild dental disease. Our study reports the first naturally occurring HPP in animals, resembling the human infantile form. The canine HPP model may serve as a preclinical model while a genetic test will assist in breeding programs.Peer reviewe
    corecore