422 research outputs found

    A large-scale real-life crowd steering experiment via arrow-like stimuli

    Full text link
    We introduce "Moving Light": an unprecedented real-life crowd steering experiment that involved about 140.000 participants among the visitors of the Glow 2017 Light Festival (Eindhoven, NL). Moving Light targets one outstanding question of paramount societal and technological importance: "can we seamlessly and systematically influence routing decisions in pedestrian crowds?" Establishing effective crowd steering methods is extremely relevant in the context of crowd management, e.g. when it comes to keeping floor usage within safety limits (e.g. during public events with high attendance) or at designated comfort levels (e.g. in leisure areas). In the Moving Light setup, visitors walking in a corridor face a choice between two symmetric exits defined by a large central obstacle. Stimuli, such as arrows, alternate at random and perturb the symmetry of the environment to bias choices. While visitors move in the experiment, they are tracked with high space and time resolution, such that the efficiency of each stimulus at steering individual routing decisions can be accurately evaluated a posteriori. In this contribution, we first describe the measurement concept in the Moving Light experiment and then we investigate quantitatively the steering capability of arrow indications.Comment: 8 page

    A V2X Message Evaluation Methodology and Cross-Domain Modelling of Safety Applications in V2X-enabled E/E-Architectures

    Get PDF
    The introduction of Vehicular Ad-Hoc Networks (VANETs) enables great potential for improving road trafic ow and especially active safety applications such as cooperative adaptive cruise control (CACC). Such applications not only rely on continuous broadcast of vehicle state information (beacons) of all vehicles, but also have strict real-time requirements. Regarding automotive E/E architectures this continuous broadcasting adds heavy internal E/E data trafic that needs to be processed in real-time by Electronic Control Units (ECUs). In this work we address this issue by proposing a novel cluster-based message evaluation methodology to significantly reduce internal E/E network trafic by discarding irrelevant messages. The approach is only depending on information received over beacons. It combines a vehicle clustering strategy as well as network and vehicle state monitoring capabilities in order to correctly evaluate messages under real-time constraints. The proposed methodology is modeled inside an abstract ECU. It is evaluated by simulating a model-based CACC application under different trafic scenarios. It is shown that a significant reduction of messages is achievable, while still guaranteeing accident-free behavior of CACC

    A large-scale real-life crowd steering experiment via arrow-like stimuli

    Get PDF
    We introduce “Moving Light”: an unprecedented real-life crowd steering experiment that involved about 140.000 participants among the visitors of the Glow 2017 Light Festival (Eindhoven, NL). Moving Light targets one outstanding question of paramount societal and technological importance: “can we seamlessly and systematically influence routing decisions in pedestrian crowds?” Establishing effective crowd steering methods is extremely relevant in the context of crowd management, e.g. when it comes to keeping floor usage within safety limits (e.g. during public events with high attendance) or at designated comfort levels (e.g. in leisure areas). In the Moving Light setup, visitors walking in a corridor face a choice between two symmetric exits defined by a large central obstacle. Stimuli, such as arrows, alternate at random and perturb the symmetry of the environment to bias choices. While visitors move in the experiment, they are tracked with high space and time resolution, such that the efficiency of each stimulus at steering individual routing decisions can be accurately evaluated a posteriori. In this contribution, we first describe the measurement concept in the Moving Light experiment and then we investigate quantitatively the steering capability of arrow indications

    Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Composites

    Full text link
    Experimental dental resin composites containing copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were developed to impart anti-bacterial properties. Increasing amounts of Cu-MBGN (0, 1, 5 and 10 wt%) were added to the BisGMA/TEGDMA resin matrix containing micro- and nano-fillers of inert glass, keeping the resin/filler ratio constant. Surface micromorphology and elemental analysis were performed to evaluate the homogeneous distribution of filler particles. The study investigated the effects of Cu-MBGN on the degree of conversion, polymerization shrinkage, porosity, ion release and anti-bacterial activity on S. mutans and A. naeslundii. Experimental materials containing Cu-MBGN showed a dose-dependent Cu release with an initial burst and a further increase after 28 days. The composite containing 10% Cu-MBGN had the best anti-bacterial effect on S. mutans, as evidenced by the lowest adherence of free-floating bacteria and biofilm formation. In contrast, the 45S5-containing materials had the highest S. mutans adherence. Ca release was highest in the bioactive control containing 15% 45S5, which correlated with the highest number of open porosities on the surface. Polymerization shrinkage was similar for all tested materials, ranging from 3.8 to 4.2%, while the degree of conversion was lower for Cu-MBGN materials. Cu-MBGN composites showed better anti-bacterial properties than composites with 45S5 BG

    Strongly anisotropic spin relaxation in graphene/transition metal dichalcogenide heterostructures at room temperature

    Get PDF
    Graphene has emerged as the foremost material for future two-dimensional spintronics due to its tuneable electronic properties. In graphene, spin information can be transported over long distances and, in principle, be manipulated by using magnetic correlations or large spin-orbit coupling (SOC) induced by proximity effects. In particular, a dramatic SOC enhancement has been predicted when interfacing graphene with a semiconducting transition metal dechalcogenide, such as tungsten disulphide (WS2_2). Signatures of such an enhancement have recently been reported but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and WS2_2. By using out-of-plane spin precession, we show that the spin lifetime is largest when the spins point out of the graphene plane. Moreover, we observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, indicating that the strong spin-valley coupling in WS2_2 is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin-valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials
    corecore