336 research outputs found

    Numerical simulations of a siphon mechanism for quiescent prominence formation

    Get PDF
    Quiescent prominences represent a significant challenge to our understanding of the flow of mass and energy in the outer layers of the solar atmosphere. A small number of quiescent prominences contain as much mass as the entire corona (Athay, 1976). The problem then is how to get that much material into the relatively small volume of a prominence and maintain it at a temperature of 10,000 K in close proximity to material at one million K. The thermal insulation to conduction provided by the magnetic field explains the disparate temperatures. The mass source problem is less well understood. One method for supplying mass to the prominence is to siphon it from the chromosphere. The siphon mechanism begins with a magnetic loop that evolves into a configuration with a gravitational well, such as that described by Kippenhahn and Schluter (1957). This could be formed, for example, by a twist in the magnetic field. A gravitational well could also be formed by a condensation induced sag in the field. This could further enhance the condensation process. Once this well has formed, or as it is forming, the material in the well area of the loop must cool and condense to the point where radiative losses exceed any heat input. Additional material must also flow into the well from the underlying chromosphere to supply the mass required to form the prominence. One example from a series of numerical simulations that were performed to study the formation of quiescent prominences is presented

    Resonant Scattering of Emission Lines in Coronal Loops: Effects on Image Morphology and Line Ratios

    Get PDF
    We have investigated the effects of resonant scattering of emission lines on the image morphology and intensity from coronal loop structures. It has previously been shown that line of sight effects in optically thin line emission can yield loop images that appear uniformly bright at one viewing angle, but show ``looptop sources'' at other viewing angles. For optically thick loops where multiple resonant scattering is important, we use a 3D Monte Carlo radiation transfer code. Our simulations show that the intensity variation across the image is more uniform than the optically thin simulation and, depending on viewing angle, the intensity may be lower or higher than that predicted from optically thin simulations due to scattering out of or into the line of sight.Comment: Accepted for publication in Ap

    Long-term Variation of the Corona in Quiet Regions

    Full text link
    Using Hinode EUV Imaging Spectrometer (EIS) spectra recorded daily at Sun center from the end of 2006 to early 2011, we studied the long-term evolution of the quiet corona. The light curves of the higher temperature emission lines exhibit larger variations in sync with the solar activity cycle while the cooler lines show reduced modulation. Our study shows that the high temperature component of the corona changes in quiet regions, even though the coronal electron density remains almost constant there. The results suggest that heat input to the quiet corona varies with the solar activity cycle.Comment: 9 pages, 5 figures, Accepted for publication in Solar Physic

    Mean shear flows generated by nonlinear resonant Alfven waves

    Full text link
    In the context of resonant absorption, nonlinearity has two different manifestations. The first is the reduction in amplitude of perturbations around the resonant point (wave energy absorption). The second is the generation of mean shear flows outside the dissipative layer surrounding the resonant point. Ruderman et al. [Phys. Plasmas 4, 75 (1997)] studied both these effects at the slow resonance in isotropic plasmas. Clack et al. [Astron. Astrophys. 494}, 317 (2009)] investigated nonlinearity at the Alfven resonance, however, they did not include the generation of mean shear flow. In this present paper, we investigate the mean shear flow, analytically, and study its properties. We find that the flow generated is parallel to the magnetic surfaces and has a characteristic velocity proportional to ϵ1/2\epsilon^{1/2}, where ϵ\epsilon is the dimensionless amplitude of perturbations far away from the resonance. This is, qualitatively, similar to the flow generated at the slow resonance. The jumps in the derivatives of the parallel and perpendicular components of mean shear flow across the dissipative layer are derived. We estimate the generated mean shear flow to be of the order of 10kms−110{\rm kms}^{-1} in both the solar upper chromosphere and solar corona, however, this value strongly depends on the choice of boundary conditions. It is proposed that the generated mean shear flow can produce a Kelvin--Helmholtz instability at the dissipative layer which can create turbulent motions. This instability would be an additional effect, as a Kelvin--Helmholtz instability may already exist due to the velocity field of the resonant Alfven waves. This flow can also be superimposed onto existing large scale motions in the solar upper atmosphere.Comment: 11 page

    Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops

    Full text link
    We report the first observation of multiple-periodic propagating disturbances along a fan-like coronal structure simultaneously detected in both intensity and Doppler shift in the Fe XII 195 A line with the EUV Imaging Spectrometer (EIS) onboard Hinode. A new application of coronal seismology is provided based on this observation. We analyzed the EIS sit-and-stare mode observation of oscillations using the running difference and wavelet techniques. Two harmonics with periods of 12 and 25 min are detected. We measured the Doppler shift amplitude of 1-2 km/s, the relative intensity amplitude of 3%-5% and the apparent propagation speed of 100-120 km/s. The amplitude relationship between intensity and Doppler shift oscillations provides convincing evidence that these propagating features are a manifestation of slow magnetoacoustic waves. Detection lengths (over which the waves are visible) of the 25 min wave are about 70-90 Mm, much longer than those of the 5 min wave previously detected by TRACE. This difference may be explained by the dependence of damping length on the wave period for thermal conduction. Based on a linear wave theory, we derive an inclination of the magnetic field to the line-of-sight about 59±\pm8 deg, a true propagation speed of 128±\pm25 km/s and a temperature of 0.7±\pm0.3 MK near the loop's footpoint from our measurements.Comment: 4 pages and 4 figures, with 3 online figures and 1 online table; Astron & Astrophys Letter, in pres

    Radiative hydrodynamic modeling of the Bastille-Day flare (14 July, 2000). I, Numerical simulations

    Get PDF
    A 1D loop radiative hydrodynamic model that incorporates the effects of gravitational stratification, heat conduction, radiative losses, external heat input, presence of helium, and Braginskii viscosity is used to simulate elementary flare loops. The physical parameters for the input are taken from observations of the Bastille-Day flare of 2000 July 14. The present analysis shows that: a) the obtained maximum values of the electron density can be considerably higher (4.2 × 10 11 cm −3 or more) in the case of footpoint heating than in the case of apex heating (2.5 × 10 11 cm −3); b) the average cooling time after the flare peak takes less time in the case of footpoint heating than in the case of apex heating; c) the peak apex temperatures are significantly lower (by about 10 MK) for the case of footpoint heating than for apex heating (for the same average loop temperature of about 30 MK). This characteristic would allow to discriminate between different heating positioning; d) in both cases (of apex and footpoint heating), the maximum obtained apex temperature T max is practically independent of the heating duration σ t , but scales directly with the heating rate E H0 ; e) the maximum obtained densities at the loop apex, n max e, increase with the heating rate E H0 and heating duration σ t for both footpoint and apex heating. In Paper II we will use the outputs of these hydrodynamic simulations, which cover a wide range of the parameter space of heating rates and durations, as an input for forward-fitting of the multi-loop arcade of the Bastille-day flare

    Flows and Non-thermal Velocities in Solar Active Regions Observed with the Extreme-ultraviolet Imaging Spectrometer on Hinode: A Tracer of Active Region Sources of Heliospheric Magnetic Fields?

    Full text link
    From Doppler velocity maps of active regions constructed from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft we observe large areas of outflow (20-50 km/s) that can persist for at least a day. These outflows occur in areas of active regions that are faint in coronal spectral lines formed at typical quiet Sun and active region temperatures. The outflows are positively correlated with non-thermal velocities in coronal plasmas. The bulk mass motions and non-thermal velocities are derived from spectral line centroids and line widths, mostly from a strong line of Fe XII at 195.12 Angstroms. The electron temperature of the outflow regions estimated from an Fe XIII to Fe XII line intensity ratio is about 1.2-1.4 MK. The electron density of the outflow regions derived from a density sensitive intensity ratio of Fe XII lines is rather low for an active region. Most regions average around 7E10+8 cm(-3), but there are variations on pixel spatial scales of about a factor of 4. We discuss results in detail for two active regions observed by EIS. Images of active regions in line intensity, line width, and line centroid are obtained by rastering the regions. We also discuss data from the active regions obtained from other orbiting spacecraft that support the conclusions obtained from analysis of the EIS spectra. The locations of the flows in the active regions with respect to the longitudinal photospheric magnetic fields suggest that these regions might be tracers of long loops and/or open magnetic fields that extend into the heliosphere, and thus the flows could possibly contribute significantly to the solar wind.Comment: one tex file, 11 postscript figure file

    The influence of sources in violent news on fright and worry responses of children in the Netherlands

    Get PDF
    Contains fulltext : 233823.pdf (Publisher’s version ) (Open Access)Children display fright and worry responses to violent news. Including involved children, non-involved children or experts as sources in children's news is assumed to reduce these negative effects. However, exemplification theory gives reason to question whether particularly the use of involved children indeed has a reassuring effect. To test this, an experiment was conducted among 237 children (8-13 y/o). They were randomly exposed to a news video containing (1) involved children as source, (2) non-involved children, or (3) adult experts. Fright and worry responses were measured both before and after exposure. Results showed that the inclusion of involved children as a source significantly increased worry responses, but did not affect fright responses. Non-involved child sources significantly reduced fright and worry responses. Expert sources reduced children’s fright responses, but did not change feelings of worry. These insights can inform news producers on how to alleviate the effects of covering violent events in news.02 juni 202110 p

    Testing the DC-electric field model in a solar flare observed by Yohkoh and the Compton Gamma-Ray Observatory

    Get PDF
    We apply a DC-electric field model to the analysis of soft and hard X-ray observations of a solar flare observed by Yohkoh and the Compton Gamma Ray Observatory (CGRO) on 6 September 1992. The flare was observed simultaneously in the soft X-ray Ca XIX line by the Yohkoh Bragg Crystal Spectrometer (BCS) and in hard X-rays (greater than 50 keV) by the CGRO Burst and Transient Spectrometer Experiment (BATSE). A strong stationary component of Ca XIX emission was present at the start of impulsive hard X-ray emission indicating an extended phase of heating prior to the production of energetic nonthermal electrons. We interpret the preflare Ca XIX emission as a signature of Joule heating by field-aligned currents. We relate the temporal variation of impulsive hard X-ray emission to the rate of runaway electron acceleration by the DC-electric field associated with the current. We find that the initial rise in hard X-ray emission is consistent with electron acceleration by a DC-electric field that increased from a preflare value of less than approximately 10(exp -5) V/cm to approximately (9 +/- 1) x 10(exp -5) V/cm at the time of the first hard X-ray peak and then remained constant during the rest of the impulsive phase. We attribute the increase in electric field strength to the formation of a current sheet at the reconnection point of two loop structures. The decrease in hard X-ray emission after flare maximum is consistent with a reduction in the number of runaway electrons due to an increase in coronal density produced by chromospheric evaporation. The increased density quenches the runaway process by enhancing collisional thermalization of electrons. To avoid the generation of an unrealistically large magnetic field, the flaring region must be highly filamented into greater than approximately 10(exp 6) oppositely directed current channels of approximately 30 cm width with an initial preflare current of approximately 3 x 10(exp 10) A per channel
    • …
    corecore