35 research outputs found

    Tick Transmission of \u3ci\u3eBorrelia burgdorferi\u3c/i\u3e to the Murine Host is not Influenced by Environmentally Acquired Midgut Microbiota

    Get PDF
    Background Ixodes scapularis is the predominant tick vector of Borrelia burgdorferi, the agent of Lyme disease, in the USA. Molecular interactions between the tick and B. burgdorferi orchestrate the migration of spirochetes from the midgut to the salivary glands—critical steps that precede transmission to the vertebrate host. Over the last decade, research efforts have invoked a potential role for the tick microbiome in modulating tick-pathogen interactions. Results Using multiple strategies to perturb the microbiome composition of B. burgdorferi-infected nymphal ticks, we observe that changes in the microbiome composition do not significantly influence B. burgdorferi migration from the midgut, invasion of salivary glands, or transmission to the murine host. We also show that within 24 and 48 h of the onset of tick feeding, B. burgdorferi spirochetes are within the peritrophic matrix and epithelial cells of the midgut in preparation for exit from the midgut. Conclusions This study highlights two aspects of tick-spirochete interactions: (1) environmental bacteria associated with the tick do not influence spirochete transmission to the mammalian host and (2) the spirochete may utilize an intracellular exit route during migration from the midgut to the salivary glands, a strategy that may allow the spirochete to distance itself from microbiota in the midgut lumen effectively. This may explain in part, the inability of environment-acquired midgut microbiota to significantly influence spirochete transmission. Unraveling a molecular understanding of this exit strategy will be critical to gain new insights into the biology of the spirochete and the tick

    Acceptance Mindfulness-Trait as a Protective Factor for Post-Natal Depression: A Preliminary Research

    Get PDF
    (1) Background: the prevalence of postnatal depression (PND) reaches up to 20%. PND could be based on the interaction between a psychological vulnerability and chronic stress that pregnancy would activate. Vulnerability factors reflect a psychological profile mirroring mindfulness-trait (MT). A high level of MT is associated with an efficient regulation of both physiological and psychological stress, especially negative moods. Interestingly, mindfulness level can be improved by program based on mindfulness meditation. We hypothesize that MT is a protective factor for PND. We also postulate that negative moods increase during the pregnancy for women who develop a PND after delivery (2) Methods: we conducted a multicentric prospective longitudinal study including 85 women during their first trimester of their pregnancy and 72 from the childbirth to the baby’s first birthday”. At the inclusion, presence and acceptance of MT and various variables of personality and of psychological functioning were assessed. Mood evolution was monitored each month during the pregnancy and a delivery trauma risk was evaluated after delivery. PND detection was carried out at 48 h, 2, 6 and 12 months after the delivery with the Edinburgh Postnatal Depression Scale with a screening cut-off >11. (3) Results: high-acceptance MT is a protective factor for PND (OR: 0.79). Women without PND displayed less negative mood during pregnancy (p < 0.05 for Anxiety, Confusion and Anger). (4) Conclusions: these results suggest the value of deploying programs to enhance the level of mindfulness, especially in its acceptance dimension, before, during and after pregnancy, to reduce the risk of PND. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA

    Get PDF
    Background: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl− cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. Methods: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. Results: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. Conclusion: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Biogeography and biochemistry of bile acid 7-dehydroxylation in the mammalian gut

    No full text
    Bile acids (BAs) are small molecules synthesized by the host and chemically modified by the microorganisms inhabiting the intestinal tract. The microbial transformation of BAs in the gut is critical to BA-mediated signaling as it modifies their amount and affinity for specific BA receptors. Bile acid 7-dehydroxylating bacteria are intestinal commensals of particular importance as they catalyze the dehydroxylation of liver-derived (primary) bile acids at the C7 position (i.e., 7-dehydroxylation) and produce secondary bile acids. One of the major receptors for secondary BAs is Takeda G-protein receptor 5 (TGR5), and it is associated with regulation of energy expenditure and glucose management, protection from liver steatosis and inflammation. In addition, 7-dehydroxylated bile acids are also associated with protection from infection by specific intestinal pathogens (i.e., Clostridioides difficile). Thus, through their action on primary BAs, 7-dehydroxylating (7-DH-ing) bacteria play an important role in health promotion and in the functioning of major physiological processes in the body such as insulin secretion, thermogenesis and immune responses. Despite these potentially important roles in the mammalian host, bile acid 7-dehydroxylating bacteria are poorly studied and much remains to be deciphered regarding their metabolism, diversity, abundance in the gut, and colonization dynamics in the host. Here, we use Clostridium scindens, as model organism to study bile acid 7-dehydroxylation in vitro and in gnotobiotic mice. We found that C. scindens metabolize only human primary bile acids (CA and CDCA). We uncovered the formation of a novel intermediate during CA 7-dehydroxylation by C. scindens in vitro: 12-oxoLCA. In vivo, using NanoSIMS and metabolomic analysis, we demonstrated that the large intestine constitutes C. scindens primary ecological niche in gnotobiotic mice. Following up on the discovery of the 12oxoLCA, we hypothesized the existence of another 7-dehydroxylation pathway for cholic acid. We postulated that it may involve the B and C rings of the steroid structure and may entail the oxidation/reduction of the C12- hydroxyl group. Thus, it was dubbed the putative vertical pathway. Conducting in vitro enzymatic assays with purified enzymes, we confirmed the existence of this novel vertical biosynthetic 7-dehydroxylation pathway for cholic acid, the most abundant primary bile acid in humans, and identified the core of enzymes necessary and sufficient for CA 7-dehydroxylation. Furthermore, we used a coupled metabolomic and metaproteomic approach to probe in vivo activity of the gut microbial community in a gnotobiotic mouse model. Additionnally, we also considered the bile acid profile in mice with more complex microbiota or with no microbiota. By comparing the bile acid profile of the different mice models along with expression of key genes of bile acid synthesis, we emphasized the profound influence of the gut microbial community on BA pool homeostasis. Altogether, our data provides a significant contribution to our collective understanding of the microbiology of bile acid 7-dehydroxylating bacteria, a group of gut commensals highly relevant to host health but that remains poorly characterized. The discovery of a novel 7-dehydroxylation pathway is a major scientific achievement of this thesis

    L'éducation thérapeutique : un modèle pertinent pour accompagner les parents d'enfant avec un Trouble du Spectre de l'Autisme ?

    No full text
    Reconnue comme une prise en charge à part entière par la loi Hôpital, Patients, Santé, Territoire et désormais inscrite dans le code de santé publique, l'Éducation thérapeutique (ETP) doit être intégrée au parcours de la personne. La mise en place de ce modèle reste encore timide dans de nombreux contextes à l'image de ce qui est observé dans le cas de l'accompagnement des parents d'enfant avec un Trouble du Spectre de l'Autisme (TSA). L'objectif de cette étude est d'une part, de présenter les étapes méthodologiques du développement d'un programme d'ETP destiné aux parents d'enfants avec un TSA et, d'autre part d'en tester la validité sociale. Le programme ETAP (Éducation thérapeutique Autisme et Paternité) a été construit selon les différentes étapes méthodologiques recommandées par la Haute Autorité de Santé. Le format du programme et le contenu des sessions ont été définis à partir des résultats d'études antérieures, de l'évaluation des besoins des parents (N = 74) et, grâce à l'avis de 9 experts. La participation des parents implique quatre phases successives : le diagnostic éducatif pré-intervention, sept séances groupales, le diagnostic éducatif post-intervention et la session « booster » à 3 mois. L'évaluation de la validité sociale a été réalisée auprès de 30 parents d'enfants atteints de TSA âgés de 3 à 10 ans. Nos résultats ont montré que l'implémentation dans le contexte de prise en charge, l'accessibilité et la satisfaction des participants sont positives. Le programme ETAP propose une approche globale et novatrice visant à développer à la fois des compétences centrées sur l'enfant et les défis éducatifs mais aussi des compétences centrées sur les besoins des pères et des mères, leurs relations avec leur environnement et leurs projets personnels. Des futures études sont nécessaires pour évaluer l'effet du programme ETAP auprès de cette population

    BaiJ and BaiB are key enzymes in the chenodeoxycholic acid 7a-dehydroxylation pathway in the gut microbe Clostridium scindens ATCC 35704

    No full text
    Data set for bile acid quantification for submitted manuscript: BaiJ and BaiB are key enzymes in the chenodeoxycholic acid 7a-dehydroxylation pathway in the gut microbe Clostridium scindens ATCC 35704. By Karin Lederballe Meibom et al
    corecore