24 research outputs found

    Enhancing singlet oxygen generation by self-assembly of a porphyrin entrapped in supramolecular fibres

    Get PDF
    Singlet oxygen (SO) is one of the reactive oxygen species that is effective in various uses, including performing chemical reactions, treating water impurities, and aiding in medicinal therapy. The generation of SO is often efficient in solution, although generation from the solid phase in nanomaterials is less reliable. Here, we report the preparation of hybrid supramolecular materials that incorporate a photosensitizer within their nanostructured fibers and demonstrate their high efficiency in promoting SO formation. The incorporation of tetrakis(4-carboxyphenyl)porphyrin within the nanofibers of a bis-imidazolium gelator was proved by various techniques, including super-resolution radial fluctuations (SRRF) microscopy, which shows the location of the chromophore precisely. SO is generated from the dispersed nanofibers far more efficiently than the dissolved porphyrin; a 14-fold higher rate is observed initially. These results point to an effective approach to the generation of SO for several applications, from optimizing synthetic protocols to photomedicine

    Stimuli-responsive poly(ampholyte)s containing L-histidine residues: synthesis and protonation thermodynamics of methacrylic polymers in the free and in the cross-linked gel forms

    Get PDF
    Methacrylate-structured poly(ampholyte)s were synthesized in the homopolymer and copolymer forms starting from the N-methacryloyl-L-histidine (MHist) and the N-isopropylacrylamide (NIPAAm). They were also obtained in the cross-linked (hydrogel) form, showing a close thermodynamic behaviour as that shown by the corresponding soluble free polymer analogues. Viscometric data revealed that the minimum hydrodynamic volume of the polymer at its isoelectric point (pH 5) shifted to lower pHs as the NIPAAm content increased, and beyond a critical low MHist content the reduced viscosity decreased, even at low pHs. The phenomenon was attributed to hydrophobic forces between the isopropyl groups outweighing the repulsive electrostatic interactions of the polymer in the positively charged form. A similar behaviour was shown by the corresponding hydrogel. The latter also revealed a different phase transition phenomenon induced by external stimuli (temperature, pH, ionic strength, electric current) when compared to the acrylate-structured analogues. The polyMHist, as well as the corresponding monomer, was found for two days to be non toxic against the mouse osteoblasts (MC3T3-E1)

    Enhancing Singlet Oxygen Generation by Self-Assembly of a Porphyrin Entrapped in Supramolecular Fibers

    Get PDF
    Singlet oxygen (SO) is one of the reactive oxygen species that is effective in various uses, including performing chemical reactions, treating water impurities, and aiding in medicinal therapy. The generation of SO is often efficient in solution, although generation from the solid phase in nanomaterials is less reliable. Here, we report the preparation of hybrid supramolecular materials that incorporate a photosensitizer within their nanostructured fibers and demonstrate their high efficiency in promoting SO formation. The incorporation of tetrakis(4-carboxyphenyl)porphyrin within the nanofibers of a bis-imidazolium gelator was proved by various techniques, including super-resolution radial fluctuations (SRRF) microscopy, which shows the location of the chromophore precisely. SO is generated from the dispersed nanofibers far more efficiently than the dissolved porphyrin; a 14-fold higher rate is observed initially. These results point to an effective approach to the generation of SO for several applications, from optimizing synthetic protocols to photomedicine

    Quantification of energy of activation to supramolecular nanofibre formation reveals enthalpic and entropic effects and morphological consequence

    Get PDF
    We show a self-assembly process leading to fibres from a system that starts far from equilibrium because of fast solvent – anti-solvent mixing and analyse the activation energies associated with the aggregation. It is in some ways reminiscent of diverse natural fibrous materials that have kinetic behaviour dominated by a rate limiting induction period followed by rapid growth. A full thermodynamic rationale for these systems and related synthetic ones is required for a full understanding of the driving force of their non-equilibrium self-assembly. Here we determine quantitatively the enthalpy and entropy of activation for the processes leading to the growth of fibres of this type, that contrasts with analysis of other systems where final energetic states are analysed. A dramatic effect is revealed whereby comparatively small changes in temperature or solvent composition (the ratio of water to ethanol) lead to alterations in the relative importance of enthalpy and entropy of activation and massive changes in the speed of fibre formation. The characteristics of the kinetic model adopted show a correlation with the fibre morphology of the self-assembled materials, which are isostructural according to diffraction experiments: The control of growth can lead to fibres only two bilayers thick. The crossover in behaviour is characteristic of the solvent mixture and the thermodynamic analysis points to the origins of this effect where different assembly routes are viable under only marginally different conditions

    Singlet oxygen generation from porphyrin-functionalized hexahedral polysilicon microparticles

    Get PDF
    © 2019 World Scientific Publishing Company. The generation of singlet oxygen (SO), primarily by using a combination of light and photosensitizers in the presence of a dissolved gas, finds applications in both chemistry and medicine. The efficiency of its formation can be enhanced by immobilization of the photosensitizers. In this work, we have explored the covalent functionalization in suspension of hexahedral slab-like polysilicon microparticles (ΌP, with a largest dimension of three microns) with a model photosensitizer, 5-(4-isothiocyanatophenyl)-10,15,20-(triphenyl)porphyrin (ITC-P), and evaluated the singlet oxygen generation of this photosensitizer in solution and after immobilization (ITC-P-ΌP) in suspension. The SO-detection experiment on the functionalized microparticles was performed using a hydrogel as the matrix supporting the microparticles (to avoid their settling), and revealed that ITC-P-ΌPin suspension is capable of generating SO more efficiently than free ITC-P in solution

    An Imidazolium-Based Supramolecular Gelator Enhancing Interlayer Adhesion in 3D Printed Dual Network Hydrogels

    Full text link
    The variety of UV-curable monomers for 3D printing is limited by a requirement for rapid curing aftereach sweep depositing a layer. This study proposes to trigger supramolecular self-assembly during theprocess by a gemini imidazolium-based low-molecular-weight gelator, allowing printing of certainmonomers. The as-printed hydrogel structures were supported by a gelator network immobilising monomer:water solutions. A thixotropic hydrogel was formed with a recovery time of 8.1 kPa and yield stress = 18 Pa, processable using material extrusion 3D printing. Material extrusion 3Dprinted objects are usually highly anisotropic, but in this case the gelator network improved the isotropyby subverting the usual layer-by-layer curing strategy. The monomer in all printed layers was curedsimultaneously during post-processing to form a continuous polymeric network. The two networks thenphysically interpenetrate to enhance mechanical performance. The double network hydrogels fabricatedwith layers cured simultaneously showed 62–147% increases in tensile properties compared to layer-bylayercured hydrogels. The results demonstrated excellent inter- and intra-layered coalescence.</p

    Self‐Assembled Surfactant‐Polyoxovanadate Soft Materials as Tuneable Vanadium Oxide Cathode Precursors for Lithium‐Ion Batteries

    Get PDF
    The mixing of [V10O28]6− decavanadate anions with a dicationic gemini surfactant (gem) leads to the spontaneous self-assembly of surfactant-templated nanostructured arrays of decavanadate clusters. Calcination of the material under air yields highly crystalline, sponge-like V2O5 (gem-V2O5). In contrast, calcination of the amorphous tetrabutylammonium decavanadate allows isolation of a more agglomerated V2O5 consisting of very small crystallites (TBA-V2O5). Electrochemical analysis of the materials’ performance as lithium-ion intercalation electrodes highlights the role of morphology in cathode performance. The large crystallites and long-range microstructure of the gem-V2O5 cathode deliver higher initial capacity and superior capacity retention than TBA-V2O5. The smaller crystallite size and higher surface area of TBA-V2O5 allow faster lithium insertion and superior rate performance to gem-V2O5

    Imaging deposition-dependent supramolecular chiral organisation

    No full text
    Thin films of a chiral diketopyrrolopyrrole derivative were imaged with spatially-defined Mueller Matrix Polarimetry, focussing on the Circular Dichroism signal, giving unique insight into the impact that deposition techniques and thermal annealing can have on chiral supramolecular structures in the solid state, where homogeneity was observed for spun-coated films while drop-coating afforded chiroptical diversity in the material, a feature invisible to absorption spectroscopy or optical microscopy.We thank the University of Nottingham through the Propulsion Futures Beacon of Excellence and the EPSRC through the LDMI DTP. The Diamond Light Source Ltd (beamline B23) is thanked for providing beamtime (SM22017 and SM26044) and Drs T.-M. Gianga, T. Ja®vorfi and R. Hussain for beamline assistance.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    corecore