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SUMMARY

Singlet oxygen (SO) is one of the reactive oxygen species that is effective in

various uses, including performing chemical reactions, treating water impu-

rities, and aiding in medicinal therapy. The generation of SO is often efficient

in solution, although generation from the solid phase in nanomaterials is less

reliable. Here, we report the preparation of hybrid supramolecular materials

that incorporate a photosensitizer within their nanostructured fibers and

demonstrate their high efficiency in promoting SO formation. The incorpora-

tion of tetrakis(4-carboxyphenyl)porphyrin within the nanofibers of a bis-

imidazolium gelator was proved by various techniques, including super-

resolution radial fluctuations (SRRF) microscopy, which shows the location of

the chromophore precisely. SO is generated from the dispersed nanofibers

far more efficiently than the dissolved porphyrin; a 14-fold higher rate is

observed initially. These results point to an effective approach to the genera-

tion of SO for several applications, from optimizing synthetic protocols to

photomedicine.

INTRODUCTION

The generation and understanding of the formation of reactive oxygen species

(ROS), and in particular singlet oxygen (SO), are important in a number of

areas of science and technology.1–4 They play a vital part in biochemical processes,

such as cell signaling,5 as well as in biomedical science.6 In synthetic systems,

they are useful for preparative methods in organic chemistry.7–9 The formation

of SO is generally achieved by the action of light on a photosensitizer that

activates the oxygen, often with a high quantum yield in non-aqueous

solvents.10,11 However, in water, the overall efficiency of the SO generation process

is low.

A simple picture of photosensitizer excitation followed by energy transfer from the

excited state to triplet oxygen forming SO implies that the tuning of the excited

states through covalent modification of the chromophore would allow optimization

of the efficiency of the energy transfer process. However, the environment of the

chromophore in materials also plays a role, whose understanding and prediction

is an enormous challenge because some immobilized photosensitizers show a

slightly improved generation of SO compared with their dissolved equivalents,

while others have poorer conversion. The supramolecular structure has a great ef-

fect on the process.12–14 Therefore, one way to influence the efficiency of SO gen-

eration is through tailoring the environment of a given chromophore. For example,

incorporation of a boron dipyrromethene (BODIPY) photosensitizer into micelles

resulted in an increase in photodynamic therapy (PDT) efficacy,15 as occurs in a
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photooxidase mimic formed by the assembly of a phthalocyanine and an amphi-

philic amino acid,16 and in phthalocyanine functionalized gold nanoparticles.17

Here, we use porphyrins for producing SO, as they are efficient photosensitizers, a

feature that has made them useful for generating SO (the main type of ROS

formed) for synthetic chemistry18–20 and PDT.21–24 To these ends, apart from using

them in homogeneous solution, different porphyrin-containing vehicles have been

developed, such as polyacrylamide nanoparticles,25 silica nanoparticles,26 and sili-

con microparticles.27 The use of these vehicles has proven that not only is the

porphyrin type important but also its surroundings. The enhanced generation of

SO from immobilized photosensitizers has been observed in polymerized zinc por-

phyrazine nanospheres,28 while immobilized porphyrins and phthalocyanines

generate SO for the degradation of pollutants.29 A specific case is the reaction

of metoprolol with SO by a reaction involving the photoexcitation of a porphyrin

immobilized on silica gel that shows different kinetics of SO generation

(exponential rather than pseudo-first order for a solution analog) to the dissolved

photosensitizer.30 Porphyrins immobilized on nanoparticles can have impaired

SO generation (compared with freely dissolved compounds) that depends on the

linker and the platform.31

We reasoned that incorporating porphyrins into a lamellar-type amphiphile array

could enhance SO generation, and herein demonstrate the ability of a supramolec-

ular hydrogel to incorporate into its fibrillar network a porphyrin derivative, which

shows greatly enhanced generation of SO compared with the molecularly dissolved

porphyrin in solution. This supramolecular system is unlike other gel photosensi-

tizer-incorporated systems, in which the porphyrins are potentially held non-specif-

ically.32–35 Also, in our hybrid system, we show how this assembly allows the

imaging of the gel in its hydrated state and permits investigation in situ of its

real 3-dimensional (3D) network with super-resolution radial fluctuations (SRRF)

microscopy.36

RESULTS

Self-Assembly of the Hybrid Material Gel@TCPP

The molecular gelator we use here is the gemini imidazolium-based amphiphile

1$2Br (Figure 1) that self-assembles in water-ethanol mixtures, leading to the forma-

tion of supramolecular (physical) gels.37 This amphiphile is widely soluble in ethanol

and the addition of water, which acts as an anti-solvent for the system, triggers the

self-assembly and fiber formation.38 We have also demonstrated that the aggrega-

tion process of this amphiphile, which takes place under conditions in which the sys-

tem is far from equilibrium, is remarkably affected by water-ethanol proportion and

temperature, which tune the kinetics of nucleation and growth of the fibers and

define the morphology and the physicochemical properties of the final gels.39

This amphiphile packs within the fibers in lamellae, formed of bilayers of amphiphilic

molecules with interdigitated alkyl chains that, stacking on top of each other, lead

ultimately to multilayer nanostructured fibers.

In the present study, we demonstrate the ability of 1$2Br to incorporate the sodium

salt of the 5,10,15,20-tetrakis(4-carboxylatephenyl)porphyrin (TCPP) during the pro-

cess of gel formation, trapping the guest molecules within the multilayer structure of

the fibers. The phase diagram of 1$2Br shows that gels can be obtained as a function

of both amphiphile concentration (1–12 mM) and water:ethanol ratio (1:1–9:1).39 We

used an amphiphile concentration of 12 mM to allow the maximum photosensitizer
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loading capacity and found that a solvent ratio of 1:1 was most suited for the forma-

tion of hybrid gels (Figure 1; Video S1).

The gel without porphyrin forms readily by the addition of water to an ethanolic so-

lution of 1$2Br to give a final amphiphile concentration of 12 mM and water:ethanol

ratio 1:1. The resulting gel forms after �3 min (Figure S1, gray bar), is quite opaque

and robust, and is stable over several months. To obtain the gels with incorporated

porphyrin (Gel@TCPP), an aqueous solution of TCPP as sodium salt was added to the

ethanolic solution of 1$2Br. Gels were loaded with increasing amounts of porphyrin

up to a final concentration of 1.2 mM, forming homogeneous gels which become

more brown as the porphyrin content increases (Figure 1). Above this TCPP concen-

tration, unstable and inhomogeneous gels were formed that show the typical gel

texture together with solid material that obviously contains the porphyrin. For con-

centrations of TCPP up to 1.2 mM, the presence of the porphyrin does not prevent

the self-assembly of 1$2Br, but rather affects the gelation time, the morphology of

the fibers, and the mechanical and physicochemical properties of the final gels

(vide infra). The Gel@TCPPs showed gradually quicker gelation time as the porphyrin

concentration increases up to 1.2 mM, producing gel in�2.5 min for the sample with

the highest amount of TCPP (Figure S1, red bars).

The mechanical properties of the gels were assessed by a rheological analysis per-

formed as a function of porphyrin loading. The viscoelastic parameters obtained

from stress sweep experiments (Figure S2) are shown in Table S1. For all of the

samples analyzed, a common behavior was the prevalence of the storage modulus

(G0) over the loss modulus (G00), which highlights the typical elastic response

for these gels.37 In particular, shear stress profiles obtained from gels with and

without TCPP show high moduli values at zero-shear stress and wide linear visco-

elastic regimes; however, storage and loss moduli increase as the TCPP content

Figure 1. Preparation of the Hybrid Gel@TCPP

Chemical structures of the gelator 1$2Br and the porphyrin TCPP as sodium salt, and schematic representation of sample preparation with and without

porphyrin, leading to the final gels.
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increases, indicating that the gradual increase in resistance to deformation may

be related to the incorporation of the porphyrin within the fibrillar network. More-

over, the critical stress values (crossover points when G0 = G00; Table S1) indicate

that the gel obtained with the higher loading of TCPP (1.2 mM) is significantly

more resistant to rupture than those having a lower porphyrin content (gel with

no TCPP, 0.012 and 0.12 mM). These features clearly suggest that TCPP is actively

participating in the self-assembly process, contributing to build up the fibrillar

network of the gels, and enhancing their strength, particularly at high TCPP

concentrations.

TIRF and SRRF for Imaging In Situ of the Real Hydrated Fibrillar Network

The incorporation of the porphyrin into the fibers was confirmed by total internal reflec-

tion fluorescence (TIRF) microscopy, a technique that allows characterization of the bulk

gels directly in their hydrated state in situ by acquiring the porphyrin fluorescence emis-

sion arising from the excitation of a thin layer of the sample, typically between 100 and

200 nm.40 Samples were prepared directly on a glass slide equipped with a 10-well

compartmentalization block, which allowed us to form the gel in situ and perform the im-

aging directly without any further sample manipulation. The images in Figure 2, re-

corded using the ‘‘16-frames averaging’’ option (Zeiss) and a high-resolution camera

(complementary metal-oxide semiconductor [CMOS]) for data acquisition, show the

gels with a concentration of 12 mM in 1$2Br and different TCPP loading. They reveal

the real hydrated fibrillar network and highlight the influence of the porphyrin on the

morphology of the fibers and their mutual interconnections within the gel. All 3 samples

analyzed with this fluorescence imaging technique show that the porphyrin is practically

completely trapped by the fibers, with negligible fluorescence in the interstitial areas. In

this regard, release experiments performed on Gel@TCPP 1.2 mM (see Figure S3) show

that no porphyrin is released from the fibrillar network after 6 days, suggesting that the

entire amount of TCPP used for gel preparation is totally incorporated into the fibers.

TIRF images show highly interconnected fibrillar networks, having different features as

a function of the porphyrin load (Figure 2).

The gel with the lowest TCPP concentration used (Gel@TCPP 0.012 mM; Figure 2A)

shows a very dense network of thin and straight micrometric-long fibers that run

across the gel with no particular 3D-ordered arrangement; a tightly packed mesh

forms with small interstitial areas. When the porphyrin load is increased to

0.12 mM (Figure 2C), wider fibers are formed that bend and intertwine within an

apparently less dense fibrillar network with bigger interstitial areas than the gel

with a lower concentration of porphyrin where straighter fibers with smaller voids

are observed. These features are sharper when a higher porphyrin concentration

is used (Gel@TCPP 1.2 mM; Figure 2E), with the sample displaying fibers that are

less well defined than the other composites, gathering together to form large bun-

dles and large clusters of fibers. These images, acquired in standard TIRF mode,

show the conventional spatial resolution limit of fluorescence microscopy, in which

the evaluation of the cross-section of the fibers gives minimum values of apparent

full width at half-maximum (FWHM) of z280 nm, in line with the Abbe diffraction

limit given by the porphyrin emission at 650 nm. Nevertheless, the analysis of the

apparent width of the fibers for the 3 samples (Figures 2B, 2D, and 2F) shows an

average value of 373 nm for the gel fibers obtained with the lowest amount of

TCPP, which becomes larger as the porphyrin content increases (479 and 495 nm

for Gel@TCPP 0.12 mM and Gel@TCPP 1.2 mM, respectively). The polydispersity

is also affected by porphyrin loading; the FWHM values for the curves in Figure 2

are 107, 100, and 136 nm from lowest to highest TCPP content (with the latter value
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being a partial consequence of bundling, as shown in higher-resolution imaging; see

below).

Seeking further insight as to the effect of the porphyrin on fiber morphology, we

analyzed the gel structures using SRRF microscopy,36 a recently developed analyt-

ical approach that provides super-resolution information from the temporal variation

of the fluorescence intensity in datasets acquired in the illumination condition that is

orders of magnitude lower than standard single-molecule localization methods

(photo-activated localization microscopy [PALM] and stochastic optical reconstruc-

tion microscopy [STORM]).41 To perform SRRF analysis, a sequence of 100 frames

Figure 2. Morphology of the 3D Network of Gel@TCPP In Situ

(A–F) Fluorescence images acquired in TIRF mode with intensity averaging of 16 frames of gel

samples in their hydrated as-formed state having concentrations of 1$2Br 12 mM and TCPP

0.012 mM (A), 0.12 mM (C), and 1.2 mM (E) in a water-ethanol ratio 1:1. Corresponding distribution

histograms of fiber apparent width (B, D, and F) obtained from FWHM measurement of the

fluorescence intensity cross-section. The scale bars represent 5 mm.
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was acquired for a given sample in standard TIRF mode and recorded with a

high-sensitivity camera (using an electron-multiplying charge-coupled device

[EM-CCD]). The frames were then processed with the NanoJ-SRRF software41

(a plug-in for ImageJ) to generate a super-resolution temporal reconstructed

image. Figure 3 shows the results obtained in standard TIRF (Figures 3A–3F) using

the above-mentioned EM-CCD camera (intensity averaging of 100 frames), and

the corresponding images were obtained with the SRRF analysis method (Figures

3G–3L).

SRRF images show the details of fiber morphology that are not detectable with con-

ventional fluorescence imaging techniques. The fluorescence intensity cross-section

of the fibers of the Gel@TCPP 0.012 mM and Gel@TCPP 0.12 mM obtained with

SRRF (Figures 3M and 3N) displays an apparent FWHM of 80–110 nm, a 4-fold

improvement with respect to conventional TIRF imaging. In addition, SRRF analysis

suggests an interesting change in fiber morphology when the gel is loaded with the

highest TCPP concentration (1.2 mM), highlighting the tendency of the fibers to form

large bundles and clusters. In fact, the SRRF image obtained for the sample

Gel@TCPP 1.2 mM seems to reveal that fibers are made of multiple strands that

run parallel to each other, twisting and intertwining into larger bundles. The intensity

cross-section profile of Gel@TCPP 1.2 mM shown in Figure 3O unveils 3 different

fiber strands, with the Gaussian fit giving apparent FWHMs of 32, 40, and 42 nm

(with distance between fluorescence intensity maxima of 45 nm), which is a 10-fold

improvement in resolution with respect to standard TIRF.

These features clearly indicate that the porphyrin load is crucial in determining fiber

morphology, which changes for relatively high concentrations of TCPP. This

behavior was confirmed by powder X-ray diffraction (XRD) experiments (Figure S4)

and scanning electron microscopy (SEM) analysis (vide infra).

Structure and Morphology

The powder diffractogramswere acquired on xerogels obtained fromgels inwater:etha-

nol 1:1 without porphyrin and with the 3 TCPP concentrations noted above (see Fig-

ure S4). All of the xerogels have similar diffraction peak positions, which is essentially in-

dependent of the TCPP loading. There is a difference in the intensity of the diffraction

peaks, presumably because of differing morphology and long-range order in the fibers.

The diffractogram of the xerogel of 1.2Br with no incorporated TCPP (black line) displays

the same features previously reported,39 which highlight the lamellar arrangement that

the amphiphile adopts within the fibers. In particular, the most intense peak centered at

2q values ofz2.3� (corresponding to a d-spacing of 3.85 nm) is assigned to the period-

icity of the bilayers that stack on top of one another, forming the finalmultilayer structure

of the fibers. The diffractogram of xerogel formed with the lowest amount of porphyrin

(0.012 mM, red line) does not display significant differences with respect to the one

without TCPP (black line). This observation indicates that the porphyrin does not alter

significantly the ordered supramolecular structure for this range of concentration. How-

ever, the gels loaded with higher amounts of TCPP (0.12 and 1.2 mM, green and blue

Figure 3. Standard TIRF versus SRRF

(A–O) Comparison between standard TIRF microscopy (A–F) with intensity averaging of 100 frames and the SRRF analysis method (G–L) of gels

12 mM in 1$2Br and 0.012 mM (A, D, G, and J), 0.12 mM (B, E, H, and K), and 1.2 mM (C, F, I, and L) in TCPP. Blue squares indicate the magnifications

of the same areas of the samples analyzed with the 2 modalities, with dashed red lines representing the positions of cross-section profiles reported

at the bottom. In the bottom row (M–O), experimental fluorescence intensity data (circles) and Gaussian fits (lines) of cross-sections obtained

with standard TIRF (red) and SRRF (black, and total fit in blue) measurements. The scale bars in the micrographs represent 5 mm (0.5 mm in magnified

images).
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lines, respectively), show a progressive decrease in the intensity of all peaks, indicating

that this porphyrin load affects very significantly the long-range amphiphile packing and

fiber morphology. These features support the observations of the morphology of the fi-

bers obtained by SEM (Figure 4).

The SEM micrographs acquired from xerogels resulting from gels made with 1.2Br

and its combinations with TCPP show significant differences in fiber morphology

and their mutual arrangement. The xerogel without TCPP displays well-defined

Figure 4. Morphology of Gel@TCPP by SEM

(A–H) SEM micrographs at 2 different magnifications of xerogels made from gels at a 12 mM

concentration of 1$2Br in a water-ethanol ratio 1:1, without porphyrin (A and B), and with TCPP

0.012 mM (C and D), 0.12 mM (E and F), and 1.2 mM (G and H). The scale bars in the micrographs

represent 1 mm.
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micrometric-long fibers of variable size, spanning from 50 to 200 nm in width, with

large fibers visibly comprising multiple narrow strands aligned in straight and flat

nanoribbons. The presence of low amount of TCPP (0.012 mM) into the gel does

not cause significant variation in the morphology of the fibers obtained by SEM, in

line with powder XRD data (Figure S4). When the gel is loaded with TCPP 0.12

and 1.2 mM, fiber morphology drastically changes, showing fibers that start to

appear much less flat and less defined, with a high tendency to cluster and form large

intertwined bundles for TCPP 1.2 mM. Therefore, the long-range order in the fibers

is disturbed by the presence of 1.2 mM TCPP, leading to a more twisted and linked

network, which is consistent with SRRF analysis.

Photophysical Properties and SO Generation

UV-visible (UV-vis) absorption and fluorescence spectroscopies were used to gain

further insights into the physicochemical properties of the porphyrin within the

gel. Figure 5 shows the extinction and emission spectra of the TCPP 20 mM in a

1:1 water-ethanol mixture and incorporated within the gel formed with 1$2Br

12 mM and the same solvent ratio. The extinction spectrum of the porphyrin in so-

lution displays the typical features of this class of molecules: an intense Soret

band that is centered at 417 nm with shoulder at 400 nm and a set of 4 weak but

well-defined Q-bands characteristic of a D2h symmetry, centered at 514, 549, 590,

and 645 nm. These features do not change significantly when the porphyrin is trap-

ped within the gel. The extinction spectrum of Gel@TCPP shows an increase in the

baseline due to the light scattered by the fibrillar network of the gel, together with

a modest bathochromic shift of all of the bands of 2–4 nm, with the Soret band

now centered at 421 nm and the Q-bands at 516, 551, 593, and 649 nm. The fluores-

cence emission spectra of the 2 samples also show a similar behavior. TCPP emission

in water-ethanol 1:1 is characterized by 2 broad bands, with the most intense band

centered at 650 nm and the less intense band at 714 nm. Similar to that seen by

extinction spectroscopy, a modest bathochromic shift (6 nm) is observed when the

porphyrin is incorporated into the gel, with the 2 bands now centered at 656 and

720 nm. It has been reported that the UV-vis and fluorescent properties of TCPP

are highly dependent on the solvent properties and the ionic strength, which affect

the degree of aggregation of this porphyrin. More specifically, the ionized TCPP

(carboxylate form) in aqueous solution at pH 7.0 or higher and at low concentration

(<1 mM) is considered to be in a non-aggregated form, with deviations from Beer’s

law at higher concentrations generally ascribed to the formation of dimers or higher

aggregates.42,43

Figure 5. Photophysical Properties of TCPP and Gel@TCPP

(A and B) Extinction (A) and normalized fluorescence emission (B) spectra of TCPP in a water-

ethanol ratio 1:1 (black curve) and within the gel in a water-ethanol ratio 1:1 (red curve).

Experimental conditions: TCPP = 20 mM, 1$2Br = 12 mM, lExc = 330 nm, long-pass filter 395 nm.
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The precise position of the Soret band of TCPP can change significantly as a function

of the polarity of the medium and the salt addition, with more polar mixtures and

high ionic strengths leading to blue shift and decrease in absorptivity, which is

generally ascribed to the formation of small aggregates, although at the concentra-

tions used here, the aggregation is considered minimal.44 This behavior is clearly

shown in the absorption spectra of TCPP 20 mM in pure water and water-ethanol mix-

tures with different ratios of the 2 solvents (Figure S5). As the amount of ethanol in

the mixture increases, the Soret band shows a progressive increase in absorptivity

with a bathochromic shift of 2 nm, together with sharpening of the Q-bands and

changing in their positions. In parallel, the fluorescence emission spectra show a

modest bathochromic shift and an increase in intensity of the 2 bands that become

less broad. The behaviors observed as a function of the ethanol content are ascrib-

able to a reduction in minor aggregation of the porphyrin in water-rich solvent mix-

tures, a feature that is also maintained when the TCPP is incorporated into the gel.

The ability of TCPP to generate SO under irradiation was assessed using 9,10-an-

thracenedyl-bis(methylene)dimalonic acid (ABMA) as a molecular probe, an anthra-

cene derivative that is commonly used for this purpose.45 In the presence of SO,

ABMA is oxidized into an endoperoxide, leading to an observed decrease in the

fluorescence emission in the region of the probe. This combination of materials is

quite specific to SO, although small amounts of other ROS may be generated. To

study SO production, the emission decrease (reflecting the concentration decrease)

Figure 6. SO Generationzfrom TCPP and Gel@TCPP

(A–D) Extinction (A and C) and fluorescence emission (B and D) spectra of ABMA in the presence of

TCPP (A and B) and after addition of Gel@TCPP (C and D), followed by irradiation for 30 min with

spectra acquisition every 5 min. Insets: percentage decrease in emission fluorescence intensity of

ABMA recorded upon irradiation. Experimental conditions: ABMA = 5 mM, PBS = 2 mM at pH = 7.4,

TCPP = 2 mM. Gel formulation: 1$2Br = 12 mM, TCPP = 20 mM and water-ethanol ratio 1:1. The final

TCPP concentration in solution is 2 mM, with ethanol content of 5%. lExc = 380 nm, long-pass filter

395 nm. Irradiation condition: 0.3 sun (30 mW/cm2), long-pass filter at 495 nm and a 10-cm-thick

water filter.
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in ABMA was evaluated in the presence of TCPP as a homogeneous solution and

when incorporated into the gel (see Experimental Procedures for further details).

The samples were irradiated for 30 min at 0.3 sun (30 mW/cm2, with a long-pass filter

at 495 nm to remove the UV component and a 10-cm-thick water filter to remove the

infrared [IR] portion of the spectrum), and extinction and fluorescence emission

spectra were recorded every 5 min (Figure 6). In the presence of TCPP in solution,

a moderate decrease in the absorption bands of ABMA is observed, in parallel

with a gradual decrease in its fluorescence emission, which shows a degradation

of ABMA of 21.6% (Figures 6A and 6B).

When TCPP was incorporated into the gel fibers, UV-vis extinction spectra showed

the presence of TCPP and ABMA together with a significant scattering contribution

caused by the colloid in suspension (Figure 6C). Upon irradiation, ABMA absorption

bands decrease remarkably, indicating high SO generation, a feature that is more

evident from the decay of the fluorescence emission, which shows a degradation

of ABMA of 91.5% (Figure 6D).

To compare the degradation rates of ABMA obtained in the presence of TCPP in solu-

tion and when delivered as Gel@TCPP, we analyzed the 2 degradation profiles as

pseudo-first order processes for the early part of the reaction (TCPP concentration re-

mains constant over the irradiation time), and the results are shown in Figure S6. The

rate constants obtained from the fits show that Gel@TCPP is able to accelerate the re-

action between ABMA and SO by a factor of 14 when compared with dissolved TCPP.

Control experiments of only ABMA without TCPP and in the presence of the gel 1$2Br

display only a minor degradation of ABMA under irradiation under the same experi-

mental conditions, showing a decrease in fluorescence emission of 7.5% with respect

to the initial intensity after 30 min, confirming no relevant SO production when the

photosensitizer is absent (Figure S7). The addition of the gel to the ABMA leads to an

increase in the scattered light arising from the dispersion of the fibers in solution (Fig-

ure S7A), together with a significant bathochromic shift (6–7 nm) and decrease in the

fluorescence emission of ABMA (Figure S7B). A similar bathochromic shift was already

observed for the interaction of TCPP with the gel fibers, and it is ascribable to an elec-

trostatic interaction between the anthracene derivative, which is negatively charged un-

der these experimental conditions, and fibers of the gel that possess a positively

charged surface.

Figure 7. Photophysical Properties of TCPP and Gel@TCPP in PBS

(A and B) Extinction (A) and fluorescence emission (B) spectra of TCPP (black curve) and Gel@TCPP

(red curve) in PBS 2 mM, pH = 7.4. Gel formulation: 1$2Br = 12 mM, TCPP = 20 mM and water-ethanol

ratio 1:1. The final TCPP concentration for both samples is 2 mM, with ethanol content of 5%. lExc =

330 nm, long-pass filter 395 nm.
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Figure 7 shows the extinction and fluorescence spectra of TCPP and Gel@TCPP in

PBS solution, the same experimental conditions adopted to evaluate the SO gener-

ation. TCPP in PBS possesses very similar features compared to those in water: the

extinction spectrum displays the Soret band at 415 nm and the Q-bands at 517, 554,

580, and 636 nm, while the fluorescence emission spectrum shows 2 broad bands

centered at 647 and 707 nm. These features change significantly when the porphyrin

is incorporated into the gel fibers. Both mixtures are stable over at least a period of

days (Figure S8). The Soret band undergoes a significant bathochromic shift and is

now centered at 422 nm, similar to the Q-bands, which show their maxima at 518,

555, 595, and 649 nm. In parallel, the 2 fluorescence emission bands show a similar

bathochromic shift (now centered at 658 and 723 nm) and become less broad and

more intense, indicating a reduction in the degree of aggregation comparable to

that observed in ethanol-rich solvent mixtures.

DISCUSSION

In conclusion, the simplicity and efficiency of the formation of the hybrid nanomate-

rial described here along with its high SO-forming ability under illumination bodes

well for its application in several areas highlighted at the beginning of the article.

The structure of the fibers in the vicinity of the porphyrin has been revealed using

SRRF microscopy, demonstrating that the porphyrin is confined to the gel fibers in

a robust way, with rows of porphyrins that presumably align with the lamellae formed

by the gelator. The exact location of the porphyrins within the fibers has been

observed, although it is not possible to identify conclusively the photosensitizers

that are on the faces or edges of the fibers, which are presumably themost important

for the function described herein. The nanomaterial is unique in its enhanced effi-

ciency as a photosensitizer for the formation of SO (14-fold improvement compared

to the free porphyrin in solution), as well as its stability for a supramolecular system,

presumably as a result of the specific electrostatic interactions between the

porphyrin and the gelator. For example, unlike a hydrogel system based on the

incorporation of sodium 5-(4-aminophenyl)-10,15,20-tris-(4-sulfonatophenyl)

porphyrin into silk fibroin where porphyrins are released,46 the nanomaterial re-

ported here is robust, no release of photosensitizer occurs (and under the propor-

tions used all the porphyrin is bound in the fibers), and it provides sustained photo-

sensitizer activity in suspension. The increase in SO generation is not only a result of

avoiding porphyrin aggregation, because in solution the sample is not aggregated

significantly (unlike other nanomaterials47), and therefore the specific immobilization

geometries must be a determining factor. The electrostatic nature of the co-assem-

bly is potentially highly versatile and promising for the preparation of similar nano-

materials with multifunctional behaviors.

EXPERIMENTAL PROCEDURES

Materials

All reagents and solvents used in this work were of analytical grade. Sodium hydrox-

ide (NaOH) was purchased from Merck (Germany). Phosphate buffered saline (PBS)

tablets and 9,10-anthracenedyl-bis(methylene)dimalonic acid (ABMA) came from

Sigma-Aldrich.

Milli-Q water (obtained with the Milli-Q Plus system from Millipore) was used

for the preparation of all of the samples. Compound 1,3-bis[(3-octadecyl-1-

imidazolio)methyl]benzene dibromide was synthesized as previously reported in

the literature.48 TCPP was synthesized, adopting the synthetic protocol reported

here.49
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Gel Preparation

Where it is not specified differently, gels 12 mM in 1.2Br were made by mixing

ethanol solutions of the gelator and Milli-Q water solutions containing the appro-

priate amount of NaTCPP as total volume 1-mL samples in 3-mL closed vials, sealed

after gentle mixing (with a micropipette) and letting them stand undisturbed at room

temperature to allow gel formation (Video S1). Gels were deemed to have formed

when no flow was observed upon the vial-inversion test. For porphyrin-containing

gels, an aqueous solution of porphyrin as sodium salt was prepared by dispersing

the desired amount of solid TCPP in water, followed by the addition of 4 equivalents

of sodium hydroxide (from 0.1 M stock solution).

Gel Characterization

The rheological analysis was performed using anAnton PaarMCR 302 rheometer equip-

pedwith a temperature controller andparallelplategeometry setup (PP50stainless steel,

50mmdiameter, 1-mmgapbetweenplates).All of themeasurementswerecarriedout at

298 K. Samples were prepared as 6 mL total volume in 7-cm diameter Petri dishes and

sealed to prevent solvent evaporation. Gels were kept at room temperature for 2 days

before study. Samples were carefully transferred on the rheometer plate without

breakage and the extra material was removed to suit the working geometry. Resistance

to deformation and resistance to rupture were evaluated while performing oscillation

amplitude tests at deformation frequency n = 1 Hz.

Fluorescence imaging was carried out on a Zeiss Elyra PS1 super-resolution micro-

scope equipped with Zen 2012 acquisition and processing software, fitted with an

alpha Plan-Apochromat 1003/1.46 Oil DIC M27 Elyra objective lens operating in

TIRF, 405 nm laser (50 mW), and LP 650 filter. A droplet of 30�C oil (Zeiss, Immersol

518F/30�) was placed on the objective lens before imaging. Automatic focusing

was used to maintain the desired focal plane during the acquisition. Images were

acquired with a pco.edge scientific CMOS (sCMOS) camera using the ‘‘16 Avg’’ op-

tion in TIRF mode (mirror angle 66.92�), at 2% laser power and a camera exposure

time of 200 ms. SRRF images were obtained, acquiring 100 image frames (or cy-

cles) in TIRF mode (mirror angle 71.50�) using 0.5% laser power, recorded with

an EM-CCD (Andor EM-CCD camera iXon Du 897) with 200 gain and 25-ms expo-

sure time per frame. Image processing was carried out with Fiji image analysis soft-

ware,50 and the SRRF analysis was performed using the open-source NanoJ-SRRF

software package.36 The algorithm used was temporal radiality pairwise product

mean (TRPPM), and the optimized parameters were a ring radius of 0.5, a radiality

magnification of 10, and 6 axes in a ring, with intensity weighting and gradient

smoothing.

Powder XRD patterns were obtained by a PANalytical MPD X-Ray Powder Diffrac-

tometer in Bragg-Brentano geometry, using Cu-Ka radiation (Ka1 = 1.540560 Å

and Ka2 = 1.544390 Å) with a voltage and current of 40 kV and 40 mA, respec-

tively. A total of 3 mL gel was prepared for each sample analyzed; these were dried

under reduced pressure to obtain xerogels. The powder was collected and placed

on a brass sample holder for data acquisition in 2q scale between 2� and 30�, with a

step size of 0.013�.

SEM images were acquired with a JEOL 7100F FEG-SEM system on samples cast on

aluminum stubs, dried under vacuum (fast drying achieved within 5–10 s after casting

to minimize possible drying effects), and coated with a 5-nm-thick layer of iridium.

Image acquisition was performed using a working distance of 6 mm and 5 kV accel-

erating voltage.
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UV-vis extinction spectroscopy was performed using a Cary 5000 UV-vis spectropho-

tometer (Agilent). Fluorescence spectroscopy was measured using an FLS 980 spec-

trometer (Edinburgh Instruments) equipped with a front face sample holder. The

measurements were carried out using quart cuvettes having a 2 or 10 mm path

length.

SO Generation

SO production wasmeasured bymonitoring the fluorescence decrease of ABMA in a

2-mM PBS solution at pH 7.4 in the presence of NaTCPP and Gel@TCPP upon irra-

diation. The molar ratio of ABMA and porphyrin was kept constant (2.5:1) for each

sample. A 10-mm cuvette containing the sample was irradiated using a xenon

lamp with a long-pass filter at 495 nm, a 10-cm-thick water filter to remove the IR

portion of the spectrum, at 0.3 sun (30 mW/cm2) for 30 min (Figure S9). Fluorescence

emission spectra were recorded at 5-min intervals.

In a typical irradiation experiment, an aliquot of 250 mL containing either the photo-

sensitizer in water:ethanol 1:1 or a gel with TCPP obtained with the same solvent

mixture (see Videos S2 and S3 for preparation), was added to a 2,250-mL solution

of ABMA 5 mM in PBS 2 mM at pH = 7.4, to give a final TCPP concentration of

2 mM and a final ethanol content of 5%.
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mental information.
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