406 research outputs found

    CLASH-VLT: Is there a dependence in metallicity evolution on galaxy structures?

    Get PDF
    We investigate the environmental dependence of the mass-metallicty (MZ) relation and it's connection to galaxy stellar structures and morphologies. In our studies, we analyze galaxies in massive clusters at z~0.4 from the CLASH (HST) and CLASH-VLT surveys and measure their gas metallicities, star-formation rates, stellar structures and morphologies. We establish the MZ relation for 90 cluster and 40 field galaxies finding a shift of ~-0.3 dex in comparison to the local trends seen in SDSS for the majority of galaxies with logM<10.5. We do not find significant differences of the distribution of 4 distinct morphological types that we introduce by our classification scheme (smooth, disc-like, peculiar, compact). Some variations between cluster and field galaxies in the MZ relation are visible at the high mass end. However, obvious trends for cluster specific interactions (enhancements or quenching of SFRs) are missing. In particular, galaxies with peculiar stellar structures that hold signs for galaxy interactions, are distributed in a similar way as disc-like galaxies - in SFRs, masses and O/H abundances. We further show that our sample falls around an extrapolation of the star-forming main sequence (the SFR-M* relation) at this redshift, indicating that emission-line selected samples do not have preferentially high star-formation rates (SFRs). However, we find that half of the high mass cluster members (M*>10^10Msun) lie below the main sequence which corresponds to the higher mass objects that reach solar abundances in the MZ diagram.Comment: Proceedings of IAU Symposium 309, Vienna, ed. B.L. Ziegler, F. Combes, H. Dannerbauer, M. Verdug

    On the Fe abundance peak formation in cool-core clusters of galaxies: hints from cluster WARPJ1415.1+3612 at z=1.03

    Get PDF
    We present a detailed study of the iron content of the core of the high-redshift cluster WARPJ1415.1+3612 (z=1.03). By comparing the central Fe mass excess observed in this system, M_Fe^exc = (1.67 +/- 0.40) x 10^9 M_sun, with those measured in local cool-core systems, we infer that the bulk of the mass excess was already in place at z=1, when the age of the Universe was about half of what it is today. Our measures point to an early and intense period of star formation most likely associated with the formation of the BCG. Indeed, in the case of the power-law delay time distribution with slope -1, which reproduces the data of WARPJ1415.1+3612 best, half of the supernovae explode within 0.4 Gyr of the formation of the BCG. Finally, while for local cool-core clusters the Fe distribution is broader than the near infrared light distribution of the BCG, in WARPJ1415.1+3612 the two distributions are consistent, indicating that the process responsible for broadening the Fe distribution in local systems has not yet started in this distant cluster.Comment: 10 pages, accepted for publication in A&A, minor language corrections added in v

    Discovery of a massive X-ray luminous galaxy cluster at z=1.579

    Full text link
    We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance level (5sigma) as a compact, but significantly extended source in the X-ray data, with a soft-band flux f(r<40")=(1.5+-0.3)x10^(-14) erg/s/cm2. Optical/NIR follow-up observations confirmed the presence of an overdensity of red galaxies matching the X-ray emission. The cluster was spectroscopically confirmed to be at z=1.579 using ground-based VLT/FORS2 spectroscopy. The analysis of the I-H colour-magnitude diagram shows a sequence of red galaxies with a colour range [3.7 < I-H < 4.6] within 1' from the cluster X-ray emission peak. However, the three spectroscopic members (all with complex morphology) have significantly bluer colours relative to the observed red-sequence. In addition, two of the three cluster members have [OII] emission, indicative of on-going star formation. Using the spectroscopic redshift we estimated the X-ray bolometric luminosity, Lbol = 5.8x10^44 erg/s, implying a massive galaxy cluster. This places XMMU J0044.0-2033 at the forefront of massive distant clusters, closing the gap between lower redshift systems and recently discovered proto- and low-mass clusters at z >1.6.Comment: letter to appear in A&

    The Chandra Deep Field South: the 1 Million Second

    Get PDF
    We present the main results from our 940 ksec observation of the Chandra Deep Field South (CDFS), using the source catalog described in an accompanying paper (Giacconi et al. 2001). We extend the measurement of source number counts to 5.5e-17 erg/cm^2/s in the soft 0.5-2 keV band and 4.5e-16 erg/cm^2/s in the hard 2-10 keV band. The hard band LogN-LogS shows a significant flattening (slope~=0.6) below ~1e-14 erg/cm^2/s, leaving at most 10-15% of the X-ray background (XRB) to be resolved, the main uncertainty lying in the measurement of the total flux of the XRB. On the other hand, the analysis in the very hard 5-10 keV band reveals a relatively steep LogN-LogS (slope ~=1.3) down to 1e-15 erg/cm^2/s. Together with the evidence of a progressive flattening of the average X-ray spectrum near the flux limit, this indicates that there is still a non negligible population of faint hard sources to be discovered at energies not well probed by Chandra, which possibly contribute to the 30 keV bump in the spectrum of the XRB. We use optical redshifts and identifications, obtained with the VLT, for one quarter of the sample to characterize the combined optical and X-ray properties of the CDFS sample. Different source types are well separated in a parameter space which includes X-ray luminosity, hardness ratio and R-K color. Type II objects, while redder on average than the field population, have colors which are consistent with being hosted by a range of galaxy types. Type II AGN are mostly found at z<~1, in contrast with predictions based on AGN population synthesis models, thus suggesting a revision of their evolutionary parameters.Comment: Accepted by The Astrophysical Journal, 24 pages, 8 figures, 1 color jpg plate (fig.1
    • …
    corecore