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Abstract

In this paper we analyze the Caprine Arthritis Encephalitis virus
disease. We construct a very general model for its epidemiology, for the
case when the disease is caused only by a specific viral strain, called
the genotype B. The model has only the endemic and the disease-
free equilibria, with a transcritical bifurcation connecting the two.
Eradication based on this analysis is possible only for very small herds,
so that it can hardly be considered economically affordable. The study
suggests that in absence of control measures new means of fighting the
disease are needed, paving the road for further theoretical and field
work.
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1 Introduction

We consider here a mathematical model for Caprine Arthritis Encephalitis
virus disease (CAEV) affecting goats, of which the first cases have been re-
ported in 1974, see [5]. As the name suggests, this disease manifests itself
mainly like arthritis, the most frequent symptom, but also through other
different forms such as pneumonia, which is rare and is associated to the
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first one, mastitis, leading to udder deformation, or also encephalitis or en-
cephalomyelitis.

CAEV is an infectious pathology characterized by a long period of incu-
bation and with a progressive cronic course. Its clinical signs are not imme-
diately visible, although the goats are infected by the virus. For this reason
the virus causing this pathology is named lentivirus. After the incubation
period, the infected goats present deformations with enlargement of specific
parts of the body. For the farmers, the disease represents an economic bur-
den, since infected goats produce less milk, are weaker and more prone to
contract other diseases.

No vaccine is available for this pathology. In order to control it, it is
therefore necessary to apply a number of hygienic and sanitary measures to
avoid the spread of the virus, see [13]. One of the most used techniques,
named test-and-slaughter, consists in selecting infected goats and directly
slaughter them. This method represents a way to eradicate a virus but
it can be used only if the infection prevalence is sufficiently low, allowing
the survival of the flock. Another one is a virus eradication technique. It
is implemented by removing sick goats from the breeding, thereby isolating
them together with other infected goats of other breedings. Finally, newborns
of infected mothers are not allowed to be weaned by their mothers, but put
in stalls with other healthy mothers where they are raised. After weaning
they rejoin the other goats in the flock. At this point however, they could of
course contract the disease via a horizontal contact with individuals who are
asymptomatic carriers.

CAEV is caused by different viral strains belonging to the Small Rumi-
nant Lentivirus group (SRLV), members of the genus lentivirus of the family
Retroviridae, able to infect both goats and sheep, see [14]. Based on a limited
number of complete sequences, they were initially described as two different
genetic groups evolving independently in sheep or goats. The ovine strains
are closely related to each other and differ from the caprine strains. Over the
past two decades, the description and phylogenetic analysis of many com-
plete or partial sequences of caprine and ovine field samples isolated from
various geographical regions have clearly highlighted the existence of a ge-
netic continuum, with viruses that do not simply cluster according to the
animal species they were isolated from, see [6].

The lentivirus genome is made up of two molecules of monocatenary RNA
with positive polarity characterized by an extreme slowness of their replica-
tion processes. The long incubation period is the reason of the fact that
symptoms of the infection show up only after many years from the conta-
gion. Another example of known retrovirus is the HIV virus responsible of
the acquired immunodeficiency syndrome (AIDS) in humans, see [7]. A virus
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belonging to the same group is responsible of the feline immunodeficiency
(FIV), see [8].

To date, SRLVs have been classified into five genotypes. With the ex-
ception of genotypes C, D and E, which seem to be geographically restricted
to limited areas, genotypes A and B have been described worldwide with
well-known associated diseases. Recent veterinary studies have found two
different virus genotypes that affect goats and lead to CAEV: the lentivirus
genotype B and the lentivirus genotype E.

The genotype B is pathogenic, causing severe CAEV signs in goats. It can
be transmitted not only in a vertical way from mother to offspring through
the colostrum or the milk, see [11], but also in a horizontal way, through the
blood or the saliva of infectious adult goats.

The lentivirus genotype E, whose prototype is known as Roccaverano
strain, from the breeding site where it has been discovered for the first time,
is particularly important because it is not pathogenic. This means that goats
infected by the genotype E do not present any symptom and furthermore they
do not pose any threat to the breedings. Field studies show that the genotype
E lentivirus can only be transmitted vertically.

In this paper we analyze CAEV caused only by the genotype B, in order
to study its complexity, severity and possible transmission ways. CAEV
caused by genotype E could produce more complex effects like coinfection or
superinfection, see [3], but since this is the first study in this area, see [12],
we leave the more complex interactions for further investigations.

The paper is organized as follows. In the next section we identify an
extremely important information for the farmer, the so-called breedings re-
placement rate, which gives a minimum threshold on the size of the breeding
for it to persist in time. Below this value indeed, the farm cannot be kept on
an economically sound basis. We then construct a very general model in Sec-
tion 3, analyze its equilibria and assess their stability. The paper concludes
with a final discussion and interpretation of the results.

2 Assessing the breeding’s replacement rate

In this section, we introduce the basic demographic model considering an
’ideal breeding’ with no pathogens affecting the goats.

Let us take as the time unit the year, which is useful in connection with the
gestation time g and the interbirth interval i. The former is on average half
year g = 1

2t, precisely about 153 days. The latter indicates the time elapsing
between subsequent deliveries. For the goats it is 1 year, because goats are
on heat only in a specific period, after gestation and the nursing times, which
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overall take about a year. To assess the animal reproductive efficiency the
following other fundamental nonnegative parameters characterize the goat
reproductive cycle, see [19].

The fertility f < 1 is the fraction of the pregnant goats, either inseminated
or bound for covering. It is used to calculate the reproductive efficiency.

The reproductivity p > 1 gives the relationship between the number of
newborns with respect to the number of pregnant goats. It represents the
ability to give birth to more offsprings in any pregnancy.

The fecundity is the product between fertility and reproductivity: ϕ =
fp > 1. It represents the relationship between the number of offsprings and
the number of goats, either inseminated or bound for covering.

The average reproductive life lr of a goat expresses the time in which the
goat is able to bear, estimated to be around 10 years. For obvious economic
reasons, usually the reproductive life of a goat coincides with its life span. Its
reciprocal µ = l−1

r describes the goat mortality, i.e. the rate at which goats
die. Thus, specifically,µ = 10−1 = 0.1 < 1. This parameter accounts for the
fact that, generally, the first coupling for a goat occurs around 7− 8 months
of age. The newbirth rate l = 1− µn < 1 is the fraction of of live newborns.
Here µn represents the newborns mortality rate.

The reproduction rate r describes the relationship between the number of
inseminated goats and the number of live newborns. It is the product between
fecundity and live birth rate, i.e. the product between fertility, reproductivity
and live birth rate; thus r = ϕl = fpl > 1. This parameter represents the
real economic parameter for the farmer. In fact it is the synthesis of the
previous parameters and therefore it is one of the most used in applications.

We are now ready to introduce the key parameter of the model, namely
the replacement rate αfarm, which represents the rate of offsprings that need
to be introduced into the breeding in order to replace the deceased or slaugh-
tered goats in an ideal, disease-free environment. Note that after birth, the
offsprings are divided between those to be raised and slaughterhouse ani-
mals. In order to keep the breeding thriving, the fraction of those that will
be raised must exceed αfarm.

Let now G(t) denote the total goat population in the breeding. The goat
population change in time is due to the fraction α of the newborns that are
kept for raising from which the removed animals, due to natural mortality
or slaughtering, must be subtracted

d

dt
G(t) = αrG(t)− µG(t). (1)

The breeding usually operates at steady state, given that the capacity of the
stalls is finite. Thus looking for an equilibrium of the above equation, we
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find

αfarm =
µ

r
=

1

lrr
. (2)

Eq. (2) shows that the replacement rate αfarm is directly proportional to the
goats mortality rate. Alternatively, the last fraction states that it is inversely
proportional to the total number of live newborns produced by a single goat
in her entire lifetime.

2.1 Replacement rate for different goat’s breeds

The most interesting goat breeds for our study are the breedings for which
the presence of the CAEV has been discovered, Fig. 1. For all of them, the
mortality is assumed to be the same, µ = 0.1, so that the reproductivity life
turns out to be the same, namely lr = 10 years, the most likely value in real
situations.

Figure 1: Examples of a goats of the Sardinian Race (left), the Roccaverano
Race (center) and the Saanen Race (right).

In the literature, see [2], the reproductive parameters characterizing these
breeds are found. They are summarized in 1.

The reproductive cycle providing deliveries between November and Febru-
ary is strongly conditioned by the annual cycle of pastures while the repro-
ductive parameters are influenced by the altitude.

Using (2), the replacement rate for the sardinian race is

αsard =
µ

r
=

0.1

1.128
∼= 0.0886 ∼= 9% (3)

meaning that to keep the goats population constant in a sardinian race goat
breeding every year 9% of live newborns must enter the breed.

In a Roccaverano breed instead, twin and triplet births are very frequent,
so that p is larger. In this case we find

αrocc =
µ

r
=

0.1

1.536
∼= 0.0651 ∼= 6.5% (4)
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Table 1: Parameters values for different goat breeds
Parameter Symbol Sardinian Roccaverano Saanen

fertility f 92% 83% 90%

prolificness p 130% 190% 160%

fecundity ϕ = fp 1.2 1.6 1.44

offsprings mortality mn 6% 4% 5

live natality ln 94% 96% 95%

reproduction rate r 1.128 1.536 1.368

so that for keeping a constant goat population in a Roccaverano race goat
breeding, 6.5% of the live newborns must be raised in the breed.

For the Saanen race, the replacement rate is

αsaan =
µ

r
=

0.1

1.368
∼= 0.073 ∼= 7.3% (5)

i.e. the goats population remains constant if 7.3% of Saanen live newborns
yearly enter into the breed.

Comparing the different goats race parameters from Table 1 we observe
that fsard > fsaanen > frocc, but psard < psaanen < procc and also ln−sard <

ln−saanen < ln−rocc. In agreement with the above calculations, it therefore
follows

αsard > αsaanen > αrocc. (6)

Thus to keep the total number of goats population constant, in a Sardinian
race goat breeding more newborns need to be raised than what it is necessary
in the Saanen or Roccaverano race goat breedings.

3 The model with an infective pathogen and
incomplete vertical transmission

We consider now a breeding with an infective pathogen affecting the goats,
the genotype B lentivirus responsible of the CAEV.

We are interested in evaluating the replacement rate in order to maintain
the total goat population constant for this par- ticulary case. We also want

6



to study under what parameter combinations the disease could disappear
or become endemic. Infected goats produce less milk, are weaker and more
prone to contract other diseases, so that, ultimately, their mortality rate
should be higher than for healthy goats. For this reason we expect that the
breeder in this case has to use a replacement rate αpath larger than the one
αfarm of the ideal breeding. As mentioned earlier, the pathogenic genotype
B lentivirus can be transmitted both in a vertical way, i.e. from the mother
to the offspring via the colostrum or the milk, and in a horizontal way, from
an infectious individual infecting other goats through the blood or the saliva.
Let γ denote the rate of newborns getting the infection from the mother,
possibly by feeding on infected milk.

As usual in epidemiology, see [4, 10], the goat population G is partitioned
into susceptibles S, asymptomatic infectious Ia and symptomatic infectious
Is individuals, obviously all nonnegative quantities. Thus

G(t) = S(t) + Ia(t) + Is(t). (7)

The asymptomatic individuals will eventually move in long time to the symp-
tomatic class. As soon as the symptomatics are recognized as disease carriers,
they are removed by the farmer from the breeding, in order to avoid further
possible spreading of the infection.

We now introduce the disease-related parameters. The average number of
contacts for unit time between a susceptible and the whole set of the infected
individuals, Ia(t) and Is(t), leading to new asymptomatic individuals is rep-
resented by β, while δ denotes the progression rate from the asymptomatic
to the symptomatic class.

From the literature, the average number of goats per breeding is seen to
be reasonably small; in fact in 2002, there were 2, 530, 466 goats in 91.463
farms in the whole US, see Table 1.9 in [15], with an average of about 28
goats per farm. In 2007 the goats increased of about 20%, but the number of
farms is not available. Assuming that they remained the same, the average
becomes about 33 goats per farm. Similar data are available for Piedmont,
in Northwest Italy, see [16] and in particular [18]. In the year 2000, there
were 3638 farms raising 46176 goats, with an average of about 13 goats per
farm. For Lombardy, [17], the situation was 50, 627 goats over 2, 857 farms,
with an average of 18 goats per farm. Further, looking specifically for the
Roccaverano stock in [19], see point 19, we find that there are only a dozen
or so of farms with around 100 goats, the largest one having 209. The vast
majority of the 68 farms has thus a relatively small number of goats. Similar
values hold also for other provinces in Italy, where different stocks are raised,
see once again [19]. From the above facts, in these situations mass action
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can thus be safely assumed for modelling the disease transmission process.
We thus have

d

dt
S(t) = αrS(t) + (1− γ)αr(Ia(t) + Is(t))− µS(t)− βS(t)(Ia(t) + Is(t))

d

dt
Ia(t) = βS(t)(Ia(t) + Is(t)) + γαr(Ia(t) + Is(t))− (δ + µ)Ia(t) (8)

d

dt
Is(t) = δIa(t)−mIs(t).

The first equation contains the dynamics of the susceptibles. Their new-
borns come either from healthy parents, at rate αr, first term, or from in-
fected parents, at the same rate. But in this case only a fraction 1 − γ of
them does not acquire the dis- ease after being born, see the discussion below
to better illustrate this point on vertical transmission. The class is subject
to natural mortality µ, third term. The last term models the infection pro-
cess. Sound individuals can get it at rate β either from asymptomatic or
symptomatic individuals.

In the second equation we find the asymptomatic individuals. They en-
ter this class either via horizontal transmission, first term, or by vertical
transmission, second term. Here only a fraction γ of newborns from infected
parents actually gets the disease, as explained more at length below. The
last term accounts for the loss of individuals either by natural mortality, or
by progression into the symptomatic class, at rate δ. Note that we explicitly
assume that no disease-related mortality exists for individuals in the asymp-
tomatic phase of the disease, in view of the extremely long evolution of this
disease.

The symptomatic class evolution is described by the last equation. In
it we find recruitments from the asymptomatic class, first term, and losses
due to mortality, represented by the parameter m that indicates natural plus
disease-related mortality.

Note that to understand the meaning of the parameter γ we need to
look at what actually happens in the farm. In this pathology, all the new-
borns from infected mothers acquire the disease by drinking the infected
milk. Therefore, if countermeasures are not taken, there is full vertical dis-
ease transmission. The farmer, however, can remove the newborns from their
mothers and put them in stalls with only healthy goats. They are raised with-
out acquiring the disease and, when weaned, they rejoin the other animals
in the breeding, as new susceptibles. We introduce γ to better assess the
farmers behavior. The two extremes correspond to the two possible opposite
behaviors. When γ = 0, all the newborns from infected mothers are removed,
while γ = 1 represents the situation of 100% vertical transmission, no off-
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spring is removed from its mother and all newborns from infected mothers
will eventually become infected. The model is general enough to accomodate
for intermediate situations, for 0 < γ < 1.

The model can be rewritten introducing the fractions of infected individ-
uals instead of the densities Ia(t) and Is(t), namely

ia(t) =
Ia(t)

G(t)
, is(t) =

Is(t)

G(t)
.

to get

d
dtG(t) = (αr − µ)G(t)− (m− µ)G(t)is(t) (9)

d

dt
ia(t) = βG(t)(ia(t) + is(t))(1− ia(t)− is(t)) + (γ − 1)αria(t)

+γαris(t)− δia(t) + (m− µ)ia(t)is(t)
d

dt
is(t) = δia(t)− (m+ αr − µ)is(t) + (m− µ)is(t)

2

Then the total breeding population is usually kept at a constant value
G(t) = N , in view of the finite size of the farm. Therefore, from now on, the
constant N represents the fixed size of the breeding. From the steady state
of the first equation in the system (9), instead of solving for an equilibrium,
we rather determine α, thus finding the replacement rate for the diseased
model, αpath, as a function of is(t). Using (2) it can be written as

αpath =
µ

r
+

m− µ

r
is(t) = αfarm +

m− µ

r
is(t) > αfarm. (10)

This is an important result, validating the farmers intuition. It means that
when the breeding is affected by a pathogen, more offsprings must be raised
than in the case of a disease-free farm. From (10), the replacement rate is
directly proportional to the infected symptomatic fraction in the population.
The higher the latter, the more newborns need to be kept in the breeding.
On the other hand, this mathematical formulation corresponds to the daily
routine for a farmer, thus giving it a sound theoretical background. Using
(10) into the system (9), we obtain the final form of the model

d

dt
ia(t) = −βNi

2
a + (γ(m− µ)− βN)i2s + (γ(m− µ)− 2βN)iais

+(βN + µγ − µ− δ)ia + (βN + µγ)is, (11)
d

dt
is(t) = δia −mis.

In view of their definitions as fractions, of the restriction ia + is ≤ 1, coming
from (7) and the nonnegativity of S, the dynamics of (11) evolves entirely in

9



the standard unit simplex Σ = {(ia, is), 0 ≤ ia + is ≤ 1} with vertices given
by the origin and the two unit points on the coordinate axes.

The equilibria of (11) can be explicitly evaluated. The isoclines are the
straight line δia −mis = 0, from the second equation, and the conic section

−βNi
2
a + (γ(m− µ)− βN)i2s + (γ(m− µ)− 2βN)iais (12)

+(βN + µγ − (µ+ δ))ia + (βN + µγ)is = 0.

The latter is in fact a hyperbola. Calculating its invariants, we find indeed

I3 =
βN

16
(βN + µγ)2(µ+ δ)[γ(m− µ)(βN + µγ − µ− δ) + βN(µ+ δ)],

I2 = −γ2(m− µ)2

4
< 0

and I1 = −2βN + γ(m− µ). Note that I3 in general does not vanish, unless

N =
γ(m− µ)((µ+ δ)− µγ)

β(γ(m− µ) + (µ+ δ))
,

while I1 vanishes only for

N =
γ(m− µ)

2β
.

In summary thus, the hyperbola crosses the origin, and if I3 �= 0, it is not
degenerate. Further it is an equilateral hyperbola if I1 = 0.

The equilibria are in any case easily explicitly calculated. They are the
origin and the point C ≡

�
iCa , i

C
s

�
with

i
C
a =

mβN(δ +m) +mµγ(δ +m)−m2(δ + µ)

(m+ δ)(βN(m+ δ)− δγ(m− µ))
, i

C
s =

δ

m
i
C
a .

This equilibrium is feasible if and only if 0 ≤ iCa ≤ 1, i.e. for either one of
the alternative conditions

0 < N <
δγ(m− µ)

β(m+ δ)
≡ Dγ, Nγ ≡ m(µ+ δ)

β(m+ δ)
− µγ

β
< N. (13)

Note that Dγ ≤ Nγ since this is equivalent to the condition (δ+µ)γ ≤ δ+µ,
which in view of the assumption on γ < 1, is always satisfied. Further,
for γ = 1, Dγ = Nγ so that the endemic equilibrium with total vertical
transmission is always feasible.

The Jacobian matrix of the system (11) is:

J =

�
J11 J12

δ −m

�
(14)
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where J11 = −2βNia + (γ(m − µ) − 2βN)is + βN + µγ − µ − δ and J12 =
2(γ(m− µ)− βN)is + (γ(m− µ)− 2βN)ia + βN + µγ.

At the origin, from the Routh Hurwitz conditions we find

N <
µ+ δ +m− µγ

β
= N

tr
, N <

m(δ + µ)

β(m+ δ)
− µγ

β
= N

det ≡ Nγ.

Further, comparing the values of the relevant quantities, we find that Ntr >
Ndet, so that the disease-free equilibrium is locally asymptotically stable just
for N < Nγ.

For the endemic equilibrium C again we use the Routh-Hurwitz condi-
tions, which amount to −tr(J|C ) = −JC

11 +m > 0, giving

N >
δγ(m− µ)

β(m+ δ)
≡ Dγ,

and det(J|C ) = −mJC
11 − δJC

12 > 0, which leads to

N >
m(µ+ δ)

β(m+ δ)
− µγ

β
≡ Nγ.

Now, the equilibrium C is stable if N > Nγ, which is the opposite con-
dition for the stability of the origin. This means that for any given value of
the breeding population N only one of the two equilibria can be reached.
The actual outcome is determined by this threshold value Nγ. In case
Dγ < N < Nγ, C is infeasible. For N < Dγ C is feasible, but unstable.
Since for N > Nγ the equilibrium C is not only stable, but becomes feasible,
while for the same condition the origin becomes instead unstable, we are in
presence also of a transcritical bifurcation. The results are summarized in
Table 2.

Table 2: Equilibria of system (11)
Condition O C Bifurcation

N < Dγ Stable Unstable

Dγ < N < Nγ Stable Infeasibile

N = Nγ Transcritical at O = C

Nγ < N Unstable Stable
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Further, we can show global stability of the endemic equilibrium C, fol-
lowing the technique used in [1].

As already previously remarked, first of all note that the trajectories of
(11) lie in the unit simplex Σ which is a compact set. Its boundaries cannot be
crossed by the systems trajectories, since the coordinate axes are solutions of
(11) and therefore cannot be crossed in view of the existence and uniqueness
theorem for ordinary differential equations.

Secondly, we show that no cycles can exist in Σ. Consider the function
B(ia, is) = (iais)−1. Observing that (is − 1) ≤ 0, because is is a fraction, we
have

M =
∂

∂ia

�
B(ia, is)

dia

dt

�
+

∂

∂is

�
B(ia, is)

dis

dt

�
=

−βN

is
− mγ is

i2a

+
βN is

i2a

+
µγ is

i2a

− βN

i2a

− µγ

i2a

− δ

i2s

=

−βN

is
− mγ is

i2a

− δ

i2s

+
(βN + µγ)

i2a

(is − 1) < 0,

Thus D < 0, by Dulac’s theorem, no periodic orbit of (11) can exist in Σ.
When the equilibrium C is locally asymptotically stable, the origin is un-

stable, and since no periodic orbit can exist in Σ, by the Poincaré-Bendixson
theorem, see [9], it follows that C must also be globally asymptotically stable.

In summary we have the following result:
Theorem For N > Nγ, the endemic equilibrium C of the system (11) is

globally asymptotically stable.

4 Discussion

We have found the disease-free and the endemic disease points as possible
systems equilibria. Further, there is a transcritical bifurcation, at which
the origin and the point C interchange their stability, when the parameter
N attains the critical value Nγ. Thus, in these conditions, since the point
C is globally asymptotically stable, the disease remains endemic and all the
trajectories tend to this equilibrium, independently of their initial conditions.

To better understand the meaning of the bifurcation condition, we rep-
resent this critical value Nγ as a function of two variables, the parameters β
and δ, for the particular values of γ = 0 and γ = 1 in the Figures 2 and 3.
Observe that m is fixed at the value 2. The maximum value reached by N is
about 80 for δ = 1 in both cases and the same value is also attained in the
whole range of γ ∈ [0, 1], see Figure 4.

12



The model shows that the system evolves toward a stable state and that
the disease is bound to remain endemic, although in principle there could be
the possibility of its eradication. But the origin is a stable equilibrium only
for a very small N , i.e. for breedings of size so small, that they can hardly be
considered as proper breedings, since they would not be economically viable.
This result therefore implies that to fight the epidemics, in absence of a
proper vaccine, measures aimed at culling the infected goats, and removing
the newborns from infected mothers are at present the only possibility to
keep the epidemics in check. Work in progress is aimed at finding other
alternative possible strategies for disease control.
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Figure 2: The graphic representation of the critical value Nγ = (µ+δ)
β(δ+1) for

γ = 0, at which the two system’s equilibria interchange their stability. The
level curves for N is plotted against β and δ on the horizontal axes.
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