296 research outputs found

    Interview of Mario Piccoli

    Get PDF
    Hacker interviews Piccoli on his experiences in the mission field in Italy. The interview was conducted in Searcy, AR

    Hyperthermia Enhances CD95-Ligand Gene Expression in T Lymphocytes

    Get PDF
    AbstractHyperthermia represents an interesting therapeutic strategy for the treatment of tumors. Moreover, it is able to regulate several aspects of the immune response. Fas (APO-1/CD95) and its ligand (FasL) are cell surface proteins whose interaction activates apoptosis of Fas-expressing targets. In T cells, the Fas-Fas-L system regulates activation-induced cell death, is implicated in diseases in which lymphocyte homeostasis is compromised, and plays an important role during cytotoxic and regulatory actions mediated by these cells. In this study we describe the effect of hyperthermia on activation of the fas-L gene in T lymphocytes. We show that hyperthermic treatment enhances Fas-L-mediated cytotoxicity, fas-L mRNA expression, and fas-L promoter activity in activated T cell lines. Our data indicate that hyperthermia enhances the transcriptional activity of AP-1 and NF-κB in activated T cells, and this correlates with an increased expression/nuclear translocation of these transcription factors. Moreover, we found that heat shock factor-1 is a transactivator of fas-L promoter in activated T cells, and the overexpression of a dominant negative form of heat shock factor-1 may attenuate the effect of hyperthermia on fas-L promoter activity. Furthermore, overexpression of dominant negative mutants of protein kinase Cε (PKCε) and PKCθ partially inhibited the promoter activation and, more importantly, could significantly reduce the enhancement mediated by hyperthermia, indicating that modulation of PKC activity may play an important role in this regulation. These results add novel information on the immunomodulatory action of heat, in particular in the context of its possible use as an adjuvant therapeutic strategy to consider for the treatment of cancer

    Decellularized diaphragmatic muscle drives a constructive angiogenic response in vivo

    Get PDF
    Skeletal muscle tissue engineering (TE) aims to efficiently repair large congenital and acquired defects. Biological acellular scaffolds are considered a good tool for TE, as decellularization allows structural preservation of tissue extracellular matrix (ECM) and conservation of its unique cytokine reservoir and the ability to support angiogenesis, cell viability, and proliferation. This represents a major advantage compared to synthetic scaffolds, which can acquire these features only after modification and show limited biocompatibility. In this work, we describe the ability of a skeletal muscle acellular scaffold to promote vascularization both ex vivo and in vivo. Specifically, chicken chorioallantoic membrane assay and protein array confirmed the presence of pro-angiogenic molecules in the decellularized tissue such as HGF, VEGF, and SDF-1\u3b1. The acellular muscle was implanted in BL6/J mice both subcutaneously and ortotopically. In the first condition, the ECM-derived scaffold appeared vascularized 7 days post-implantation. When the decellularized diaphragm was ortotopically applied, newly formed blood vessels containing CD31+, \u3b1SMA+, and vWF+ cells were visible inside the scaffold. Systemic injection of Evans Blue proved function and perfusion of the new vessels, underlying a tissue-regenerative activation. On the contrary, the implantation of a synthetic matrix made of polytetrafluoroethylene used as control was only surrounded by vWF+ cells, with no cell migration inside the scaffold and clear foreign body reaction (giant cells were visible). The molecular profile and the analysis of macrophages confirmed the tendency of the synthetic scaffold to enhance inflammation instead of regeneration. In conclusion, we identified the angiogenic potential of a skeletal muscle-derived acellular scaffold and the pro-regenerative environment activated in vivo, showing clear evidence that the decellularized diaphragm is a suitable candidate for skeletal muscle tissue engineering and regeneration

    Arf6: a new player in FcγRIIIA lymphocyte-mediated cytotoxicity

    Get PDF
    AbstractThe activation of phosphoinositide metabolism represents a critical step in the signaling pathways leading to the activation of cytolytic machinery, but its regulation is partially understood. We report here that the stimulation of the low-affinity receptor for immunoglobulin G (IgG) (FcγRIIIA, CD16) on primary human natural killer (NK) cells induces a phosphatidylinositol 3-kinase (PI3K)–dependent activation of the small G protein Arf6. We first demonstrate a functional role for Arf6-dependent signals in the activation of the antibody-dependent cellular cytotoxicity (ADCC) attributable to the control of secretion of lytic granule content. We also show that Arf6 couples CD16 to the lipid-modifying enzymes phosphatidylinositol4phosphate 5-kinase type I alpha (PI5KIα) and phospholipase D (PLD) that are involved in the control of granule secretion; Arf6, but not Rho family small G proteins RhoA and Rac1, is required for receptor-induced PI5KIα membrane targeting as well as for PI5KIα and PLD activation. Our findings suggest that Arf6 plays a crucial role in the generation of a phosphatidylinositol4,5-bisphosphate (PIP2) plasma membrane pool required for cytolytic granule-mediated target cell killing

    Proline-Rich Tyrosine Kinase 2 and Rac Activation by Chemokine and Integrin Receptors Controls NK Cell Transendothelial Migration

    Get PDF
    Abstract Protein tyrosine kinase activation is an important requisite for leukocyte migration. Herein we demonstrate that NK cell binding to endothelium activates proline-rich tyrosine kinase 2 (Pyk-2) and the small GTP binding protein Rac that are coupled to integrin and chemokine receptors. Chemokine-mediated, but not integrin-mediated, Pyk-2 and Rac activation was sensitive to pretreatment of NK cells with pertussis toxin, a pharmacological inhibitor of Gi protein-coupled receptors. Both Pyk-2 and Rac are functionally involved in chemokine-induced NK cell migration through endothelium or ICAM-1 or VCAM-1 adhesive proteins, as shown by the use of recombinant vaccinia viruses encoding dominant negative mutants of Pyk-2 and Rac. Moreover, we found that Pyk-2 is associated with the Rac guanine nucleotide exchange factor Vav, which undergoes tyrosine phosphorylation upon integrin triggering. Finally, we provide direct evidence for the involvement of Pyk-2 in the control of both chemokine- and integrin-mediated Rac activation. Collectively, our results indicate that Pyk-2 acts as a receptor-proximal link between integrin and chemokine receptor signaling, and the Pyk-2/Rac pathway plays a pivotal role in the control of NK cell transendothelial migration

    Macrophage Migration Inhibitory Factor in Fetoplacental Tissues from Preeclamptic Pregnancies with or without Fetal Growth Restriction

    Get PDF
    The proinflammatory cytokine MIF (macrophage migration inhibitory factor) is involved in physiological and pathological processes in pregnancy. MIF maternal serum levels are increased in preeclampsia (PE). We hypothesize that pregnancy tissues are the source of MIF overexpression in PE. MIF protein was studied in maternal sera, placental tissues, fetal membranes, and umbilical cord of 8 control and 20 PE pregnancies: 10 with normal fetal growth (PE-AGA) and 10 with fetal growth restriction (PE-FGR). MIF levels were significantly higher in PE-AGA membranes than in controls and PE-FGR. In PE-FGR, MIF cord concentrations were higher than in PE-AGA while MIF placental levels were lower than in controls. MIF maternal serum levels were higher in PE, compared to controls, and the difference was mainly due to PE-FGR samples. These data support MIF involvement in PE pathogenesis and suggest that different pregnancy tissues contribute to MIF production in PE with and without fetoplacental compromise

    Wood hydrosystem of three cultivars of Vitis vinifera L. is modified in response to contrasting soils

    Get PDF
    Background and aims: In Vitis vinifera L., the same genotype can express different phenotypic characteristics depending on the environmental conditions, e.g. soil deepness. Wood anatomy, specifically xylem vessel traits, provide information about the plant’s eco-physiological responses to the environment. Slight changes in vessel diameter and density may impact plant hydrosystem functionality, since large vessels are more efficient in the volume of transported water compared to narrower ones, although the latter are more effective in avoiding stress-induced embolism. The aim of this study was to analyze variations in the wood hydraulic structure of three grapevine cultivars, induced by soils with strong contrast in depth, texture and rock volume, providing evidence of their adaptative capacities. Methods: Anatomical and growth traits of each annual growth ring were measured in 8-year-old plants of Bonarda, Malbec and Tempranillo cultivars growing in contrasting depths of soils. Results: Bonarda exhibited no differences in wood productivity between soils with different depths, showing the ability to modulate the earlywood vessel lumen area. Malbec and Tempranillo did show differences in wood productivity between the two types of soils, with major changes in the trade-off between vessel density and lumen area in Tempranillo, while in Malbec there were few changes in the vessel traits. Conclusions: Xylem hydraulic characteristics of the grapevine stems varied in response to soil environment and cultivar. This knowledge may help to select management strategies in areas of soil heterogeneity.Fil: Roig Puscama, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Berli, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Tomazello Filho, Mario. Universidade de Sao Paulo; BrasilFil: Mastrantonio, Leandro Eloy. Universidad Nacional de Cuyo; ArgentinaFil: Piccoli, Patricia Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentin

    Src-Dependent Syk Activation Controls CD69-Mediated Signaling and Function on Human NK Cells

    Get PDF
    Abstract CD69 C-type lectin receptor represents a functional triggering molecule on activated NK cells, capable of directing their natural killing function. The receptor-proximal signaling pathways activated by CD69 cross-linking and involved in CD69-mediated cytotoxic activity are still poorly understood. Here we show that CD69 engagement leads to the rapid and selective activation of the tyrosine kinase Syk, but not of the closely related member of the same family, ZAP70, in IL-2-activated human NK cells. Our results indicate the requirement for Src family kinases in the CD69-triggered activation of Syk and suggest a role for Lck in this event. We also demonstrate that Syk and Src family tyrosine kinases control the CD69-triggered tyrosine phosphorylation and activation of phospholipase Cγ2 and the Rho family-specific exchange factor Vav1 and are responsible for CD69-triggered cytotoxicity of activated NK cells. The same CD69-activated signaling pathways are also observed in an RBL transfectant clone, constitutively expressing the receptor. These data demonstrate for the first time that the CD69 receptor functionally couples to the activation of Src family tyrosine kinases, which, by inducing Syk activation, initiate downstream signaling pathways and regulate CD69-triggered functions on human NK cells

    Ten daily fractions for partial breast irradiation. Long-term results of a prospective phase II trial.

    Get PDF
    Partial breast irradiation (PBI) is an effective adjuvant treatment after breast conservative surgery for selected early-stage breast cancer patients. However, the best fractionation scheme is not well defined. Hereby, we report the 5-year clinical outcome and toxicity of a phase II prospective study of a novel regimen to deliver PBI, which consists in 40 Gy delivered in 10 daily fractions. Patients with early-stage (pT1-pT2, pN0-pN1a, M0) invasive breast cancer were enrolled after conservative surgery. The minimum age at diagnosis was 60 years old. PBI was delivered with 3D-conformal radiotherapy technique with a total dose of 40 Gy, fractionated in 10 daily fractions (4 Gy/fraction). Eighty patients were enrolled. The median follow-up was 67 months. Five-year local control (LC), disease-free survival (DFS), and overall survival (OS) were 95%, 91%, and 96%, respectively. Grade I and II subcutaneous fibrosis were documented in 23% and 5% of cases. No grade III late toxicity was observed. PBI delivered in 40 Gy in 10 daily fractions provided good clinical results and was a valid radiotherapy option for early-stage breast cancer patients
    corecore