120 research outputs found

    Carrot anthocyanins genetics and genomics: Status and perspectives to improve its application for the food colorant industry

    Get PDF
    Purple or black carrots (Daucus carota ssp. sativus var. atrorubens Alef) are characterized bytheir dark purple- to black-colored roots, owing their appearance to high anthocyanin concentrations. In recent years, there has been increasing interest in the use of black carrot anthocyanins as natural food dyes. Black carrot roots contain large quantities of mono-acylated anthocyanins, which impart a measure of heat-, light- and pH-stability, enhancing the color-stability of food products over their shelf-life. The genetic pathway controlling anthocyanin biosynthesis appears well conserved among land plants; however, different variants of anthocyanin-related genes between cultivars results in tissue-specific accumulations of purple pigments. Thus, broad genetic variations of anthocyanin profile, and tissue-specific distributions in carrot tissues and organs, can be observed, and the ratio of acylated to non-acylated anthocyanins varies significantly in the purple carrot germplasm. Additionally, anthocyanins synthesis can also be influenced by a wide range of external factors, such as abiotic stressors and/or chemical elicitors, directly affecting the anthocyanin yield and stability potential in food and beverage applications. In this study, we critically review and discuss the current knowledge on anthocyanin diversity, genetics and the molecular mechanisms controlling anthocyanin accumulation in carrots. We also provide a view of the current knowledge gaps and advancement needs as regards developing and applying innovative molecular tools to improve the yield, product performance and stability of carrot anthocyanin for use as a natural food colorant.Fil: Iorizzo, Massimo. North Carolina State University. Department Of Food, Bioprocessing And Nutrition Sciences. Plants For Human Health Institute.; Estados UnidosFil: Curaba, Julien. North Carolina State University. Department Of Food, Bioprocessing And Nutrition Sciences. Plants For Human Health Institute.; Estados UnidosFil: Pottorff, Marti. North Carolina State University. Department Of Food, Bioprocessing And Nutrition Sciences. Plants For Human Health Institute.; Estados UnidosFil: Ferruzzi, Mario G.. North Carolina State University. Department Of Food, Bioprocessing And Nutrition Sciences. Plants For Human Health Institute.; Estados UnidosFil: Simon, Pihilipp W.. United States Department of Agriculture. Agricultural Research Service; Argentina. University of Wisconsin; Estados UnidosFil: Cavagnaro, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Departamento de Producción Agropecuaria. Cátedra de Horticultura y Floricultura; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria La Consulta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentin

    African Adansonia digitata fruit pulp (baobab) modifies provitamin A carotenoid bioaccessibility from composite pearl millet porridges

    Get PDF
    Food-to-food fortification of staple cereal products using nutrient-dense plants shows promise to address multiple micronutrient deficiencies including vitamin A, iron and zinc in Sub-Saharan Africa. However, there is limited information on the potential interaction effects that such food-to-food fortified strategies may have on individual micronutrient bioavailability. The main objective of the current study was to investigate the impact of incorporating Adansonia digitata (baobab fruit pulp), a mineral-rich plant material, on the delivery of carotenoids from a composite cereal porridge. Formulations of native fruit/vegetable-cereal composites were screened for interactions which could influence both bioaccessibility and subsequent intestinal uptake of provitamin A carotenoids. Proportions of pearl millet flour and plant materials were dry blended to provide composite cereal porridges with total provitamin A carotenoid concentrations ranging from 3590.7 ± 23.4 to 3698.5 ± 26.5 μg/100 g (fw) and baobab concentrations ranging from 0 to 25% (dw).While there were no significant differences in provitamin A carotenoid bioaccessibility from porridge formulations containing 5 or 15% baobab, inclusion of 25% baobab resulted in a significant (p < 0.05) decrease in bioaccessibility (13.3%) as compared to the control (23.8%). Despite the reduced bioaccessibility, 6 h uptake efficiency of provitamin A carotenoids by Caco-2 human intestinal cells was not significantly altered by 25% baobab inclusion. These findings suggest that the inhibitory effects on carotenoid micellarization (bioaccessibility) observed with increased baobab addition may not ultimately limit the bioavailability of carotenoids.The USAID FoodProcessing & Post Harvest Innovation Lab (FPLAID-0AA-L-14-00003) and Sorghum & Millet Innovation Lab (SMILAID-0AA-A-13-00047) through United States Agency for International Development (USAID).http://link.springer.com/journal/131972020-11-22hj2020Consumer ScienceFood Scienc

    Preclinical study of dimebon on β-amyloid-mediated neuropathology in Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dimebon is a retired non-selective antihistamine drug currently being investigated as a therapeutic agent for the treatment of Alzheimer's disease (AD). Results from several completed clinical trials are mixed and contradictory. Proper interpretations of these clinical observations, as well as future development of dimebon in AD treatment are complicated by the lack of concrete information on the mechanisms by which dimebon might benefit AD.</p> <p>Results</p> <p>The present studies are designed specifically to assess whether dimebon might modulate β-amyloid (Aβ)-mediated responses which are central to the development and progression of AD dementia. We found that dimebon is bioavailable in the brains of mice following oral administration. AD mice chronically treated with dimebon exhibited a trend of improvement in spatial memory function without affecting the levels of total Aβ as well as soluble oligomeric Aβ in the brain. The same trend of behavior improvement is also seen in wild type animals chronically treated with dimebon.</p> <p>Conclusion</p> <p>Collectively, our preclinical studies using the TgCRND8 AD mouse model demonstrated that dimebon might have some beneficial effect in improving cognitive function independent of Alzheimer's disease-type Aβ-related mechanisms or global energy metabolism in the brain. Observations from our study and others suggesting dimebon might improve cognition in wild type mice and rats raises the possibility that dimebon might be able to benefit cognitive function in patients with other neurodegenerative disorders, such as Huntington's disease, or in the aging population. Additional studies will be necessary to clarify the mechanisms by which dimebon might directly or indirectly benefit cognitive function.</p

    Potential of moringa leaf and baobab fruit food-to-food fortification of wholegrain maize porridge to improve iron and zinc bioaccessibility

    Get PDF
    Food-to-food fortification (FtFF) with moringa leaf (iron source) and/or baobab fruit (citric acid and ascorbic acid source) (each 13–15 g/100 g porridge dry basis (db)) was studied to improve iron and zinc nutritive quality in African-type wholegrain maize-based porridges using in vitro dialysability assay. Moringa FtFF decreased percentage and total bioaccessible iron and zinc, by up to 84% and 45%, respectively. Moringa was very high in calcium, approximately 3% db and calcium–iron–phytate complexes inhibit iron bioavailability. Baobab FtFF increased percentage and total bioaccessible iron and zinc, especially in porridges containing carrot + mango (β-carotene source) and conventionally fortified with FeSO4, by up to 111% and 60%, respectively. The effects were similar to those when ascorbic and citric acids were added as mineral absorption enhancers. While moringa FtFF could be inhibitory to iron and zinc bioavailability in cereal-based porridges, baobab fruit FtFF could improve their bioavailability, especially in combination with conventional iron fortification.The United States Agency for International Development (USAID) Bureau for Food Security under Agreement #AID-OAA-L-14-00003 as part of Feed the Future Innovation Lab for Food Processing and Post-harvest Handling, the SA National Research Foundation (NRF), the World Academy of Sciences (TWAS) and the University of Pretoria.http://www.tandfonline.com/loi/iijf202022-04-15hj2021Consumer ScienceFood Scienc

    Skeletal Protection and Promotion of Microbiome Diversity by Dietary Boosting of the Endogenous Antioxidant Response

    Get PDF
    There is an unmet need for interventions with better compliance that prevent the adverse effects of sex steroid deficiency on the musculoskeletal system. We identified a blueberry cultivar (Montgomerym [Mont]) that added to the diet protects female mice from musculoskeletal loss and body weight changes induced by ovariectomy. Mont, but not other blueberries, increased the endogenous antioxidant response by bypassing the traditional antioxidant transcription factor Nrf2 and without activating estrogen receptor canonical signaling. Remarkably, Mont did not protect the male skeleton from androgen-induced bone loss. Moreover, Mont increased the variety of bacterial communities in the gut microbiome (α-diversity) more in female than in male mice; shifted the phylogenetic relatedness of bacterial communities (β-diversity) further in females than males; and increased the prevalence of the taxon Ruminococcus1 in females but not males. Therefore, this nonpharmacologic intervention (i) protects from estrogen but not androgen deficiency; (ii) preserves bone, skeletal muscle, and body composition; (iii) elicits antioxidant defense responses independently of classical antioxidant/estrogenic signaling; and (iv) increases gut microbiome diversity toward a healthier signature. These findings highlight the impact of nutrition on musculoskeletal and gut microbiome homeostasis and support the precision medicine principle of tailoring dietary interventions to patient individualities, like sex.Fil: Sato, Amy Y.. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados UnidosFil: Pellegrini, Gretel Gisela. Indiana University. School of Medicine; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Cregor, Meloney. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados UnidosFil: McAndrews, Kevin. Indiana University. School of Medicine; Estados UnidosFil: Choi, Roy B. Indiana University. School of Medicine; Estados UnidosFil: Maiz, Maria. Purdue University; Estados UnidosFil: Johnson, Olivia. Indiana University. School of Medicine; Estados UnidosFil: McCabe, Linda D.. Purdue University; Estados UnidosFil: McCabe, George P.. Purdue University; Estados UnidosFil: Ferruzzi, Mario G.. North Carolina State University; Estados UnidosFil: Lila, Mary Ann. North Carolina State University; Estados UnidosFil: Peacock, Munro. Indiana University. School of Medicine; Estados UnidosFil: Burr, David B.. Indiana University. School of Medicine; Estados UnidosFil: Nakatsu, Cindy H.. Purdue University; Estados UnidosFil: Weaver, Connie M.. Purdue University; Estados UnidosFil: Bellido, Teresita. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados Unido

    Brain-Targeted Proanthocyanidin Metabolites for Alzheimer's Disease Treatment

    Get PDF
    While polyphenolic compounds have many health benefits, the potential development of polyphenols for the prevention/treatment of neurological disorders is largely hindered by their complexity as well as limited knowledge regarding their bioavailability, metabolism and bioactivity, especially in the brain. We recently demonstrated that dietary supplementation with a specific grape-derived polyphenolic preparation (GP) significantly improves cognitive function in a mouse model of Alzheimer’s disease (AD). GP is comprised of the proanthocyanidin (PAC) catechin and epicatechin in monomeric (Mo), oligomeric, and polymeric (Po) forms. In this study we report that following oral administration of the independent GP forms, only Mo is able to improve cognitive function and only Mo metabolites can selectively reach and accumulate in the brain at a concentration of ~400 nM. Most importantly we report for the first time that a biosynthetic epicatechin metabolite, 3’-O-methyl-epicatechin-5-O-β-glucuronide (3’-O-Me-EC-Gluc), one of the PAC metabolites identified in the brain following Mo treatment, promotes basal synaptic transmission and long term potentiation at physiologically relevant concentrations in hippocampus slices through mechanisms associated with cAMP response element binding protein (CREB) signaling. Our studies suggest that select brain-targeted PAC metabolites benefit cognition by improving synaptic plasticity in the brain, and provide impetus to develop 3’-O-Me-EC-Gluc and other brain-targeted PAC metabolites to promote learning and memory in Alzheimer’s disease and other forms of dementia

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    2018 Scientific Program Planning

    No full text
    corecore