24 research outputs found
Proteome changes of fibroblasts and endothelial cells upon incubation with human cytomegalovirus subviral Dense Bodies
Human cytomegalovirus (HCMV) is a pathogen of high medical relevance. Subviral Dense Bodies (DB) were developed as a vaccine candidate to ameliorate the severe consequences of HCMV infection. Development of such a candidate vaccine for human application requires detailed knowledge of its interaction with the host. A comprehensive mass spectrometry (MS)- based analysis was performed regarding the changes in the proteome of cell culture cells, exposed to DB
Class I HDAC overexpression promotes temozolomide resistance in glioma cells by regulating RAD18 expression
Overexpression of histone deacetylases (HDACs) in cancer commonly causes resistance to genotoxic-based therapies. Here, we report on the novel mechanism whereby overexpressed class I HDACs increase the resistance of glioblastoma cells to the SN1 methylating agent temozolomide (TMZ). The chemotherapeutic TMZ triggers the activation of the DNA damage response (DDR) in resistant glioma cells, leading to DNA lesion bypass and cellular survival. Mass spectrometry analysis revealed that the catalytic activity of class I HDACs stimulates the expression of the E3 ubiquitin ligase RAD18. Furthermore, the data showed that RAD18 is part of the O6-methylguanine-induced DDR as TMZ induces the formation of RAD18 foci at sites of DNA damage. Downregulation of RAD18 by HDAC inhibition prevented glioma cells from activating the DDR upon TMZ exposure. Lastly, RAD18 or O6-methylguanine-DNA methyltransferase (MGMT) overexpression abolished the sensitization effect of HDAC inhibition on TMZ-exposed glioma cells. Our study describes a mechanism whereby class I HDAC overexpression in glioma cells causes resistance to TMZ treatment. HDACs accomplish this by promoting the bypass of O6-methylguanine DNA lesions via enhancing RAD18 expression. It also provides a treatment option with HDAC inhibition to undermine this mechanism
Trypanosomes can initiate nuclear export co-transcriptionally
The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is nonconventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNAbinding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes
Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei
Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite’s metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro–induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro–induced differentiation. Our results provide insights into the mechanisms of the parasite’s mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation
Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models
Parkinson disease (PD) is a neurodegenerative disorder characterized by the abnormal intracellular accumulation of SNCA/α-synuclein. While the exact mechanisms underlying SNCA pathology are not fully understood, increasing evidence suggests the involvement of autophagic as well as lysosomal deficiencies. Because CTSD (cathepsin D) has been proposed to be the major lysosomal protease involved in SNCA degradation, its deficiency has been linked to the presence of insoluble SNCA conformers in the brain of mice and humans as well as to the transcellular transmission of SNCA aggregates. We here postulate that SNCA degradation can be enhanced by the application of the recombinant human proform of CTSD (rHsCTSD). Our results reveal that rHsCTSD is efficiently endocytosed by neuronal cells, correctly targeted to lysosomes and matured to an enzymatically active protease. In dopaminergic neurons derived from induced pluripotent stem cells (iPSC) of PD patients harboring the A53T mutation within the SNCA gene, we confirm the reduction of insoluble SNCA after treatment with rHsCTSD. Moreover, we demonstrate a decrease of pathological SNCA conformers in the brain and within primary neurons of a CTSD-deficient mouse model after dosing with rHsCTSD. Boosting lysosomal CTSD activity not only enhanced SNCA clearance, but also restored endo-lysosome and autophagy function in human and murine neurons as well as tissue. Our findings indicate that CTSD is critical for SNCA clearance and function. Thus, enzyme replacement strategies utilizing CTSD may also be of therapeutic interest for the treatment of PD and other synucleinopathies aiming to decrease the SNCA burden.authorsversionepub_ahead_of_prin
3D-Elektronenmikroskopie dreier respiratorischer Proteine unter Verbesserung der bioinformatischen Abläufe
Die Transmissionselektronenmikroskopie gepaart mit bioinformatischen Methoden zur digitalen Bildverarbeitung ist ein schneller Weg zur Erstellung dreidimensionaler Rekonstruktionen großer Proteinkomplexe. Durch die Kombination der 3D-Elektronenmikroskopie mit der Röntgenstruktur von Untereinheiten erhält man ein pseudoatomares Modell der Quartärstruktur.rnIn dieser Arbeit wurden auf diese Weise die Quartärstrukturen von drei unterschiedlichen respiratorischen Proteinen analysiert (einem Hämoglobin und zwei Hämocyaninen). Zudem wurden spezielle Software-Tools entwickelt, um vorhandene Softwarepakete besser miteinander kombinieren zu können.rnDie ca. 15Ã
3D-Rekonstruktion des Hämoglobins vom Wasserfloh Daphnia pulex klärt die umstrittene Frage, wie viele Untereinheiten die Quartärstruktur aufbauen: Es sind 16 (mit je zwei Häm-Domänen), angeordnet in zwei Schichten als D4-symmetrisches Sandwich. Die ca. 15 Ã
3D-Rekonstruktion des 2x6meren Hämocyanins des Flusskrebses Astacus leptodactylus gibt neue Einblicke in die Kontaktstelle zwischen den beiden Hexameren; sie liegt im Bereich der Domäne 3. Bei dem aus 48 Untereinheiten bestehenden Hämocyanin des Pfeilschwanzes Limulus polyphemus wurde eine Auflösung von ca. 7 Ã
erreicht. Die Homologiemodelle der Untereinheiten wurden flexibel gefittet. An einer der Kontaktstellen zwischen den beiden Halbmolekülen wurden Molekulardynamik (MD)-Simulationen durchgeführt, um mehr über die Art der chemischen Bindung an dieser Kontaktstelle zu erfahren.rnSpeziell für die Kombination von 3D-Elektronenmikroskopie und MD-Simulation wurden verschiedene bioinformatische Werkzeuge und eine leicht zu erweiternde universelle grafische Benutzeroberfläche (GUI) entwickelt
Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response
Proteome changes of fibroblasts and endothelial cells upon incubation with human cytomegalovirus subviral Dense Bodies
Abstract Human cytomegalovirus (HCMV) is a pathogen of high medical relevance. Subviral Dense Bodies (DB) were developed as a vaccine candidate to ameliorate the severe consequences of HCMV infection. Development of such a candidate vaccine for human application requires detailed knowledge of its interaction with the host. A comprehensive mass spectrometry (MS)- based analysis was performed regarding the changes in the proteome of cell culture cells, exposed to DB
The nuclear proteome of <i>Trypanosoma brucei</i>
<div><p><i>Trypanosoma brucei</i> is a protozoan flagellate that is transmitted by tsetse flies into the mammalian bloodstream. The parasite has a huge impact on human health both directly by causing African sleeping sickness and indirectly, by infecting domestic cattle. The biology of trypanosomes involves some highly unusual, nuclear-localised processes. These include polycistronic transcription without classical promoters initiated from regions defined by histone variants, trans-splicing of all transcripts to the exon of a spliced leader RNA, transcription of some very abundant proteins by RNA polymerase I and antigenic variation, a switch in expression of the cell surface protein variants that allows the parasite to resist the immune system of its mammalian host. Here, we provide the nuclear proteome of procyclic <i>Trypanosoma brucei</i>, the stage that resides within the tsetse fly midgut. We have performed quantitative label-free mass spectrometry to score 764 significantly nuclear enriched proteins in comparison to whole cell lysates. A comparison with proteomes of several experimentally characterised nuclear and non-nuclear structures and pathways confirmed the high quality of the dataset: the proteome contains about 80% of all nuclear proteins and less than 2% false positives. Using motif enrichment, we found the amino acid sequence KRxR present in a large number of nuclear proteins. KRxR is a sub-motif of a classical eukaryotic monopartite nuclear localisation signal and could be responsible for nuclear localization of proteins in <i>Kinetoplastida</i> species. As a proof of principle, we have confirmed the nuclear localisation of six proteins with previously unknown localisation by expressing eYFP fusion proteins. While proteome data of several <i>T</i>. <i>brucei</i> organelles have been published, our nuclear proteome closes an important gap in knowledge to study trypanosome biology, in particular nuclear-related processes.</p></div