8 research outputs found

    Tailor-Made, Linear, and “Comb-Like” Polyester-Based Copolymers: Synthesis, Characterization, and Thermal Behavior of Potential 3D-Printing/Electrospinning Candidates

    Get PDF
    Tailor-made, linear, and “comb-like” poly(ε-caprolactone)-based copolymers were synthesized by employing a combination of controlled polymerization techniques. Poly(dimethylsiloxane-block-ε-caprolactone) copolymers (SCL#) were synthesized by a combination of anionic and ring-opening polymerization (ROP), whereas “comb-like” poly(hydroxyethylmethacrylate-co-(hydroxyethylmethacrylate-graft-ε-caprolactone)-block-ε-caprolactone) (HEMACL#) were synthesized through simultaneous ROP and reversible addition fragmentation chain transfer (RAFT) polymerization. Copolymers were characterized by hydrogen nuclear magnetic resonance (1H-NMR), size exclusion chromatography (SEC), and Fourier transform infrared (FTIR) spectroscopy. All polymers exhibited narrow molar masses distributions (Mw/Mn<1.54), and their thermal properties were analyzed by isothermal crystallization kinetics (Avrami’s theory, by using differential scanning calorimetry (DSC)) and by employing modulated thermogravimetric analysis (MTGA). The macromolecular structure exerts a noticeable effect on the PCL block behavior when compared to the PCL homopolymer, at least for the temperature range studied (16–24°C): less differences in thermal properties were observed for linear block copolymers, whereas for “comb-like” graft copolymers their final crystallization capacity strongly depends on the presence of branches. For both sets of copolymers, the decrease in the resulting melting temperatures and the increase in the half-life crystallization time values might be useful processing parameters, particularly if these copolymers are planned for using as an alternative source of 3D printing or electrospinning materials

    Synthesis and morphology of model PS-b-PDMS copolymers

    No full text
    True model linear poly(styrene-b-dimethylsiloxane) PS-b-PDMS copolymers were synthesized by using sequential addition of monomers and anionic polymerization (high-vacuum techniques), employing the most recent experimental procedures that allow the controlled polymerization of each monomer to obtain blocks with controlled molar masses. The model diblock copolymers obtained were analyzed by using different techniques, such as size-exclusion chromatography, 1H NMR, Fourier transform infrared spectroscopy, small angle X-rays scattering (SAXS), and wide angle X-rays scattering (WAXS). The PS-bPDMS copolymers obtained showed narrow molar mass distribution and variable PDMS content, ranging from 2 up to 55 wt %. Compacted powder samples were investigated by SAXS to reveal their structure and morphology changes on thermal treatment In the interval from 30 to 200 °C. The sample with the highest PDMS content exhibits a lamellar morphology, whereas two other samples show hexagonally packed cylinders of PDMS in a PS matrix. For the lowest PDMS content samples, the SAXS pattern corresponds to a disordered morphology and did not show any changes on thermal treatment. Detailed information about the morphology of scattering domains was obtained by fitting the SAXS scattering curves. © 2010 Wiley Periodicals, Inc.Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), and the Universidad Nacional del Sur (UNS, Argentina) financial support. The funding by the Spanish CICYT (MAT2008-03,232) and MICINN (MAT2009-07789) is also acknowledged. Higher Council for Scientific Research (CSIC) JAE-doc.Peer Reviewe
    corecore