97 research outputs found

    How the chemical features of molecules may have addressed the settlement of metabolic steps

    Get PDF
    Introduction: While the evolutionary adaptation of enzymes to their own substrates is a well assessed and rationalized field, how molecules have been originally selected in order to initiate and assemble convenient metabolic pathways is a fascinating, but still debated argument. Objectives: Aim of the present study is to give a rationale for the preferential selection of specific molecules to generate metabolic pathways. Methods: The comparison of structural features of molecules, through an inductive methodological approach, offer a reading key to cautiously propose a determining factor for their metabolic recruitment. Results: Starting with some commonplaces occurring in the structural representation of relevant carbohydrates, such as glucose, fructose and ribose, arguments are presented in associating stable structural determinants of these molecules and their peculiar occurrence in metabolic pathways. Conclusions: Among other possible factors, the reliability of the structural asset of a molecule may be relevant or its selection among structurally and, a priori, functionally similar molecules

    Thiol oxidase ability of copper ion is specifically retained upon chelation by aldose reductase

    Get PDF
    Bovine lens aldose reductase is susceptible to a copper-mediated oxidation, leading to the generation of a disulfide bridge with the concomitant incorporation of two equivalents of the metal and inactivation of the enzyme. The metal complexed by the protein remains redox active, being able to catalyse the oxidation of different physiological thiol compounds. The thiol oxidase activity displayed by the enzymatic form carrying one equivalent of copper ion (Cu1-AR) has been characterized. The efficacy of Cu1-AR in catalysing thiol oxidation is essentially comparable to the free copper in terms of both thiol concentration and pH effect. On the contrary, the two catalysts are differently affected by temperature. The specificity of the AR-bound copper towards thiols is highlighted with Cu1-AR being completely ineffective in promoting the oxidation of both low-density lipoprotein and ascorbic acid

    Apparent cooperativity and apparent hyperbolic behavior of enzyme mixtures acting on the same substrate

    Get PDF
    It is well known that a negative cooperative behavior displayed by a monomeric enzyme may be associated with the simultaneous presence of two enzymes acting on the same substrate. In this paper, emphasis is given to the effect exerted by a rapid equilibrium between the enzyme forms in leading to a hyperbolic behavior, thus masking the presence of multiple enzyme forms

    Cysteinyl-glycine in the control of glutathione homeostasis in bovine lenses

    Get PDF
    PURPOSE: To define a possible metabolic and/or signaling role for Cys-Gly in glutathione homeostasis in bovine eye lenses. METHODS: Bovine lenses were cultured up to 24 h in a medium containing 0.5 mM reduced glutathione (GSH) under different conditions. The intracellular and the extracellular contents of thiol compounds were evaluated using a free zone capillary electrophoresis method. RESULTS: Culture of lenses in the presence of GSH and the gamma-glutamyl transferase inhibitor serine-borate demonstrated a 1.5 fold increase in the level of extra-lenticular glutathione with respect to the initial value. Cys-Gly exogenously added impaired the extra-lenticular accumulation of glutathione. Both cysteine and gamma-Glu-Cys were ineffective in reducing extra-lenticular glutathione accumulation. In all conditions no differences in reduced and total intra-lenticular glutathione levels were observed. CONCLUSIONS: The impairment of Cys-Gly generation correlated with inhibition of gamma-glutamyl transferase by serine/borate, resulting in high extra-lenticular concentration of glutathione effluxed from the bovine lens. The possibility that Cys-Gly may intervene either in the replenishment processes for cysteine in the GSH biosynthetic step or in the function of the efflux GSH-transporters is considered

    Consistent anomalies of the induced W gravities

    Get PDF
    The BRST anomaly which may be present in the induced WnW_n gravity quantized on the light-cone is evaluated in the geometrical framework of Zucchini. The cocycles linked by the cohomology of the BRST operator to the anomaly are straightforwardly calculated thanks to the analogy between this formulation and the Yang-Mills theory. We give also a conformally covariant formulation of these quantities including the anomaly, which is valid on arbitrary Riemann surfaces. The example of the W3W_3 theory is discussed and a comparison with other candidates for the anomaly available in the literature is presented.Comment: Latex, no figures, 12 pages (To appear on Physics Letters B.

    Edible vegetables as a source of aldose reductase differential inhibitors

    Get PDF
    The hyperactivity of aldose reductase (AR) on glucose in diabetic conditions or on glutathionyl-hydroxynonenal in oxidative stress conditions, the source of cell damage and inflammation, appear to be balanced by the detoxifying action exerted by the enzyme. This detoxification acts on cytotoxic hydrophobic aldehydes deriving from membrane peroxidative processes. This may contribute to the failure in drug development for humans to favorably intervene in diabetic complications and inflammation, despite the specificity and high efficiency of several available aldose reductase inhibitors. This paper presents additional features to a previously proposed approach, on inhibiting the enzyme through molecules able to preferentially inhibit the enzyme depending on the substrate the enzyme is working on. These differential inhibitors (ARDIs) should act on glucose reduction catalyzed by AR without little or no effect on the reduction of alkenals or alkanals. The reasons why AR may be an eligible enzyme for differential inhibition are considered. These mainly refer to the evidence that, although AR is an unspecific enzyme that recognizes different substrates such as aldoses and hydrophobic aldehydes, it nevertheless displays a certain degree of specificity among substrates of the same class. After screening on edible vegetables, indications of the presence of molecules potentially acting as ARDIs are reported

    Modulation of aldose reductase activity by aldose hemiacetals

    Get PDF
    Glucose is considered as one of the main sources of cell damage related to aldose reductase (AR) action in hyperglycemic conditions and a worldwide effort is posed in searching for specific inhibitors of the enzyme. This AR substrate has often been reported as generating non-hyperbolic kinetics, mimicking a negative cooperative behavior. This feature was explained by the simultaneous action of two enzyme forms acting on the same substrate

    The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase

    Get PDF
    Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation. A kinetic model of DMSO action with respect to differently acting inhibitors was analysed. Three AR inhibitors, namely the flavonoids neohesperidin dihydrochalcone, rutin and phloretin, were used to evaluate the effects of DMSO on the inhibition studies on the reduction of L-idose and HNE

    L-Idose: an attractive substrate alternative to d-glucose for measuring aldose reductase activity

    Get PDF
    Although glucose is one of the most important physio-pathological substrates of aldose reductase, it is not an easy molecule for in vitro investigation into the enzyme. In many cases alternative aldoses have been used for kinetic characterization and inhibition studies. However these molecules do not completely match the structural features of glucose, thus possibly leading to results that are not fully applicable to glucose. We show how aldose reductase is able to act efficiently on L-idose, the C-5 epimer of D-glucose. This is verified using both the bovine lens and the human recombinant enzymes. While the kcat values obtained are essentially identical to those measured for D-glucose, a significant decrease in KM was observed. This can be due to the significantly higher level of the free aldehyde form present in L-idose compared to D-glucose. We believe that L-idose is the best alternative to D-glucose in studies on aldose reductase

    Kinetic features of carbonyl reductase 1 acting on glutathionylated aldehydes

    Get PDF
    The attempt to evaluate the human carbonyl reductase 1 (CBR1) activity on 3-glutathionylated-4-hydroxyalkanals through the classical spectrophotometric assay, in which NADPH oxidation is monitored at 340 nm, failed. This was due to the ability of the enzyme to catalyze the reduction of the free aldehyde form and at the same time the oxidation of the hemiacetal structure of this class of substrates, thus leading to the occurrence of a disproportion reaction sustained by a redox recycle of the pyridine cofactor. Making use of glutathionylated alkanals devoid of the 4 hydroxyl group, and thus unable to structurally arrange into a cyclic hemiacetal form, the susceptibility to inhibition of CBR1 to polyphenols was tested. Flavones, that were much more effective than isoflavones, resulted able to modulate the reductase activity of the enzyme on this new peculiar class of substrates
    corecore