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Abstract 

The attempt to evaluate the human carbonyl reductase 1 (CBR1) activity on 3-glutathionylated-4-

hydroxyalkanals through the classical spectrophotometric assay in which NADPH oxidation is 

monitored at 340 nm failed. This was due to the ability of the enzyme to catalyze the reduction of 

the free aldehyde form and at the same time the oxidation of the hemiacetal structure of this class of 

substrates, thus leading to the occurrence of a disproportion reaction sustained by a redox recycle of 

the pyridine cofactor. Making use of glutathionylated alkanals devoid of the 4 hydroxyl group, and 

thus unable to structurally arrange into a cyclic hemiacetal form, the susceptibility to inhibition of 

CBR1 to polyphenols was tested. Flavones, that were much more effective than isoflavones, 

resulted able to modulate the reductase activity of the enzyme on this new peculiar class of 

substrates. 
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1. Introduction 

The removal of carbonyl compounds, both from endogenous and exogenous sources, is an 

important step in cellular detoxification. It requires the action of several enzymes, including those 

belonging to the aldo-keto reductase (AKR) and short chain dehydrogenase/reductase (SDR) 

families [1, 2]. Among the SDR family, a prominent role is played by carbonyl reductases (CBRs), 

a group of NADPH-dependent enzymes [2]. Of the three CBRs in humans, encoded by three 

different genes, carbonyl reductase 1 (CBR1) represents the most important activity for carbonyl 

metabolism. CBR1 is a cytosolic monomeric protein which possesses a series of highly conserved 

residues, namely, Asn, Tyr, Ser and Lys. Upon hydride transfer from the cofactor NADPH, these 

residues enable carbonyl reduction to occur [3]. In addition, located nearby the substrate binding 

site, Cys227 appears to be important for the recognition and correct allocation of substrates [4]. In 

the CBR1 structure, a glutathione binding site has also been described, devoted to the recognition of 

glutathionylated substrates [5]. For the binding of this kind of substrates, Cys227 is no longer 

required, as demonstrated by site directed mutagenesis studies [4]. CBR1 possess a broad substrate 

specificity, since it is able to reduce structurally different carbonyl compounds, including xenobiotic 

quinones and endogenous steroids, eicosanoids and lipid-derived compounds [6-9]. In terms of 

physiologically occurring substrates, CBR1 has been demonstrated to intervene in the metabolism 

of prostaglandins, as it is able to act both as a prostaglandin 9-ketoreductase and also as a 15-

hydroxyprostaglandin dehydrogenase [10]. CBR1 has also been suggested to be involved in the 

metabolism of the indole isatin [11]. The ability to catalyze the NADPH-dependent reduction of the 

lipid peroxidation product 4-oxo-nonenal (ONE) and of its glutathione adduct (GS-ONE), 

strengthens the role of CBR1 in antioxidant defense [9]. In addition, the ability of CBR1 to 

intervene in the 4-hydroxy-2-nonenal (HNE) metabolism, through the conversion of the Michael 

adduct of the aldehyde with glutathione (3-glutathionyl-4-hydroxynonanal, GSHNE), has been 

recently reported [12, 13]. Indeed, cells with impaired CBR1 activities either by siRNA or by 

treatment with CBR1 inhibitors have shown an increase in the level of oxidative stress markers, 

such as intracellular reactive oxygen species and lipid peroxidation products [14]. 

In cancer cells, tumor proliferation, invasion and metastasis have been demonstrated to correlate 

positively with an increase in CBR1 activity [15, 16]. The enzyme is also able to reduce the 

antitumor drugs daunorubicin and doxorubicin (DOX) into their corresponding alcohols. Several 

experimental studies have supported the prominent role of the enzyme in anthracycline resistance 

[17-19]. Indeed, the inhibition of CBR1 increases the therapeutic efficacy of DOX and reduces its 

cardiotoxicity, by impairing the generation of the reduction product doxorubicinol [20, 21]. 



This paper reports further insights on the ability of CBR1 to act on glutathionylated aldehydes, 

together with the ability to modulate CBR1 activity on these substrates through the action of 

polyphenolic compounds. 

 

2. Materials and Methods 

2.1 Materials. 9,10-phenanthrenquinone (PQ), bovine serum albumin, dimethyl sulfoxide (DMSO), 

D,L-dithiotreitol (DTT), reduced glutathione (GSH), hexanal, NADP
+
, nonanal, propanal, protease 

inhibitors cocktail, sodium dodecyl sulphate (SDS), trans-2-hexenal, trans-2-nonenal, trans-2-

propenal (acrolein) were purchased from Sigma–Aldrich (St. Louis, MO, USA). HHE was 

purchased from Cayman Chemicals (AnnArbor, MI, USA). 4(R)-HNE was purchased from Avanti 

Polar Lipids (Alabaster, AL, USA). Whatman DEAE-cellulose (DE-52) and Sephacryl S200 were 

purchased from GE Healthcare (Little Chalfont, UK). Blue Sepharose and Bradford reagent were 

purchased from Bio-Rad (Hercules, CA, USA). YM10 membranes (10 kDa cut-off) were purchased 

from Amicon Millipore (Darmstadt, Germany). Dialysis tubing (10 kDa cut-off) was purchased 

from Spectrum Laboratories (Rancho Dominguez, CA, USA). All inorganic chemicals were of 

reagent grade from BDH (VWR International, Poole, Dorset, UK). All solvents were HPLC grade 

from J.T. Baker Chemicals (Center Valley, PA, USA). NADPH was from Carbosynth (Compton, 

England). 

 

2.2 Determination of CBR1 activity. Enzyme activity units were determined following the 

dehydrogenase activity of CBR1 at 37°C in a 50 mM sodium phosphate buffer pH 8.4 with 0.18 

mM NADP
+
 and 100 µM GSHNE as substrate. One unit of enzyme activity is defined as the 

amount of enzyme that catalyzes the conversion of 1 µmol of substrate in the above conditions. The 

reductase activity was measured at 37°C in a 50 mM sodium phosphate buffer pH 6.0 with 0.18 

mM NADPH and different substrates as indicated. When the effect of polyphenols was evaluated, 

the assay mixture also contained 0.5% DMSO. All spectrophotometric measurements were 

performed at 340 nm by a Beckman DU640 spectrophotometer calibrated against air. 

2.3 Expression and purification of CBR1. The expression of the human recombinant CBR1 

(hCBR1) was performed as described [13]. The purification of the enzyme was carried out 

essentially as described for the NADP
+
-dependent GSHNE dehydrogenase activity from a human 

astrocytoma cell line [12]. The pure hCBR1 (specific activity 50 U/mg) was stored at -80°C in a 10 

mM sodium phosphate buffer pH 7.0 containing 0.1 mM NADP
+
, 1.5 M NaCl, 2 mM DTT and 



31% (v/v) glycerol. The enzyme was extensively dialyzed against 10 mM sodium phosphate buffer 

pH 7.0, before use.  

 

2.4 Alkenals-glutathione adduct preparation. Diethylacetal of 4(R,S)-hydroxy-2-nonenal (HNE) 

was synthetized as described [12] and the free aldehyde was generated by acid hydrolysis (pH 3.0). 

The glutathione adducts of alkanals and alkenals were prepared by incubating GSH with different 

aldehydes as previously described [13].  

2.5 Other methods. Protein concentration was determined according to Bradford [22] using BSA as 

standard protein. Statistical analysis was conducted using GraphPad software.  

 

3. Results and Discussion  

3.1 Disproportion of 3-glutathionyl-4-hydroxyalkanals. Mass spectrum analysis of GSHNE 

incubated with hCBR1 and substoichiometric amounts of NADPH demonstrated that the adduct 

possesses two functional groups recognized by the enzyme action. In fact (Fig. 1), GSHNE was able 

to undergo both reduction, at the level of the free aldehydic group generating 3-glutathionyl-1,4-

dihydroxynonane (GSDHN), and oxidation, at the level of the hydroxyl hemiacetal group 

generating 3-glutathionyl-γ-nonano lactone [13]. Thus, despite the complete transformation of 

GSHNE, the spectrophotometric evaluation of NADPH (Fig. 2, curve 1) did not reveal any 

appreciable consumption of the cofactor. Essentially the same results were obtained for different 

NADPH concentrations (ranging from 10 to 30 µM) at different substrate/cofactor ratios (ranging 

from 1 to 7). The same occurred when the glutathione adduct with 4-hydroxy-2-hexenal (GSHHE) 

was used as substrate (Fig. 2, curve 2). On the other hand, when the aldehydic group is the only 

functional group susceptible to the enzyme action, as occurs with glutathione adducts with alkenals, 

such as GS-nonanal (Fig. 2, curves 3 and 4), a complete oxidation of the cofactor was observed. 

Thus hCBR1, acting both as a reductase and as a dehydrogenase on two functional groups of the 

same substrate, catalyzed a disproportion reaction on GSHNE, which took place through the redox 

recycle of the cofactor. While it was impossible to evaluate the reductase activity of hCBR1 on 

GSHNE, the dehydrogenase activity was easily followed by spectrophotometric evaluation at 340 

nm. This was helped by the use of a basic pH to impair the reduction (an approximately 75% 

decrease of the reductase activity on GS-nonanal occurs going from pH 6.2 to pH 8.4), and the 

positive effect exerted by the predominant presence of the hemiacetal structure in solution [13].  



A preferential action of hCBR1 on three of the four anomeric couples of GSHNE diastereoisomers 

(3-(R,S)GS-4-(R,S)HNE) generated upon spontaneous reaction between 4-(R,S)HNE and 

glutathione has been demonstrated [13]. In particular, the anomeric couple less efficiently 

recognized by the enzyme contained 3-(S)GS-4-(R)HNE. Furthering this evidence, the kinetic 

parameters were determined (at 37°C in 50 mM sodium phosphate, pH 8.4, 0.18 mM NADP
+
 and 

3.2 mU of enzyme) for the GSHNE enantiomeric couples obtained starting from 4-(R)HNE (3-

(R,S)GS-4-(R) HNE) and compared with  those previously reported for GSHNE derived from 

racemic HNE (13). An approximate 30% decrease in the kcat value was observed using 3-(R,S)GS-

4-(R) HNE as substrate (1,358 ± 52 min
-1

), with respect to  3-(R,S)GS-4-(R,S)HNE (2,000 ± 56 min
-

1
). Conversely, no differences were observed in KM values (27.2 ± 1.0 µM and 27.1 ± 2.8 µM, for 

3-(R,S)GS-4-(R,S)HNE and 3-(R,S)GS-4-(R)HNE, respectively). It is difficult to rationalize these 

results, especially for the KM values. In fact these are affected both by possible differences in the 

recognition of different diastereoisomers and by the different relative contribution to the mixture 

composition of the less active substrate. On the other hand, concerning the kcat comparison, it 

appeared clear that the glutathionyl-4(S)-HNE diastereoisomers should possess a higher 

susceptibility to reduction with respect to the glutathionyl-4(R)-HNE diastereoisomers. Work is in 

progress to clarify this point making use of individual GSHNE diastereoisomers. 

The dehydrogenase activity of hCBR1 acted not only on GSHNE, but also on GSHHE, and 

conceivably, on all glutathione-aldehydes adducts able to generate hemiacetal structures. Evaluation 

of the kinetic parameters of hCBR1 for GSHHE revealed that this substrate was recognized by the 

enzyme less efficiently with respect to GSHNE. In fact, while the KM value (89.6 ± 6.9 µM) was 

approximately threefold higher with respect to the value measured for GSHNE [13], in the case of 

kcat (924 ± 37 min
-1

) a twofold decrease was observed. Thus, the decrease in the specificity constant 

observed for the reductase activity [13], along with the shortening of the hydrophobic chain of the 

substrate, was also confirmed in the case of the dehydrogenase activity.  

 

3.2 Glutathionylated aldehydes as substrates of hCBR1. Despite the broad substrate specificity 

demonstrated for CBR1, aldehydes appeared to be very poor substrates for the enzyme, and their 

recognition by CBR1 was strictly dependent on the presence of the glutathionyl moiety. No activity 

was observed using propanal, nonanal, hexanal, or their corresponding trans-2-alkenals, as 

substrates of the reductase activity of hCBR1. However, the glutathionyl adducts of the above 

mentioned trans-2-alkenals were efficiently reduced by hCBR1. Figure 3 reports a comparison 

between 9,10 phenantrenequinone, a classical substrate of hCBR1, and GS-nonanal. From these 



data, KM values of 4.6 ± 0.4 µM and 6.5 ± 0.4 µM, and kcat values of 4,002 ± 83 min
-1

 and 1,848 ± 

83 min
-1

 were obtained, for PQ and GS-nonanal, respectively.  

3.3 Inhibition of hCBR1 by polyphenolic compounds. Several polyphenolic compounds have been 

reported to affect CBR1 activity, depending on their structural features and also on the substrate 

used to detect the activity [23, 24]. Thus, it could be important to evaluate the effect of inhibitors on 

the hCBR1 catalyzed GSHNE transformation. However, the particular features of GSHNE, which 

allow this molecule to undergo disproportion (see Section 3.1), make the adduct not an easy 

manageable substrate to follow the reducing ability of CBR1. Thus GS-nonanal, the reductable 

substrate most similar to GSHNE, was used to test the effect of different polyphenolic compounds. 

Results are reported in Table 1; the resulting inhibitory pattern appeared similar, but not identical, 

to what previously observed using isatin as substrate of CBR1 [24]. Rutin appeared to be the most 

potent of the compounds tested. A comparison with quercetin indicated a positive role in 

determining the inhibitory effect for the rutinose moiety in position 3 of the flavonoid structure. On 

the other hand, no effect was exerted by the presence of rhamnose in position 3, since quercetin and 

quercetrin displayed essentially the same IC50 values. Finally, the inefficacy of isoflavons, as 

daidzein, daidzin and genistein in affecting CBR1 activity indicated that the movement of the 

hydroxyphenyl group from position 2, as in flavones, to position 3, has to be considered as the main 

responsible of the strongly reduced inhibitory action of these compounds. This occurred despite, as 

in genistein, the presence 5-hydroxy and 7-hydroxy groups, previously reported [23] to be relevant 

in eliciting the inhibitory potency. 

The ability of CBR1 to generate GSDHN makes this enzyme potentially able to contribute to the 

generation of a pro-inflammatory stimulus, together with the AKR member AKR1B1, already 

known to be able to generate the reduced form of GSHNE [25]. As a consequence, these results 

open a new front in the search of anti-inflammatory molecules able to modulate NF-kB activation 

mediated by GSDHN. In fact, targeting AKR1B1 would not be sufficient in modulating GSDHN 

level. This could be strengthened by the evidence that in different cell lines treated with the 

AKR1B1 inhibitors Sorbinil and Tolrestat only a partial decrease of the activation of NF-kB was 

observed [26-28]. These observations are consistent with the ineffectiveness of Sorbinil (100 % 

CBR1 activity in the presence of 7 µM Sorbinil, R. Moschini, unpublished results) and Tolrestat 

[29] in affecting CBR1 activity. 

Polyphenols are a class of secondary metabolites biosynthesized from the shikimic acid and 

polyacetate pathways [30] widely distributed in the plant kingdom [31]. These compounds usually 

exist in the form of glycosides in plants, which is the reason for their high water solubility [32]. 

Polyphenols have been associated with the health benefits deriving from consuming large quantities 



of vegetable and fruits. Indeed, several experimental evidences demonstrate that polyphenols 

possess multiple biological activities, being able to act as antioxidant, anticancer and anti-

inflammatory agents [33-36]. Frequently, the activity of these molecules has been associated to 

their inhibitory action on different enzymes [37-40]. The ability of polyphenols to inhibit CBR1 

activity may clearly contribute to the overall anti-inflammatory and anticancer action of these 

compounds. An emblematic example may be that of epigallocatechin gallate, one of the most 

abundant components of green tea, a beverage whose potential as antitumoral and antioxidant has 

been reported [41-43]. In fact, this catechin has been demonstrated to specifically target CBR1 and 

enhances the action of daunorubicin in the treatment of hepatocellular carcinoma, by avoiding the 

generation of the cardiotoxic doxorubicinol [20].  

However, CBR1 plays a relevant role also in the prostaglandin metabolism [6] and in the 

antioxidant defense, since its ability to remove toxic compounds as ONE, GSONE [9] and in 

general, as here confirmed, glutathionylated aldehydes deriving from lipid peroxidation [13, 14]. 

Moreover, as recently reported [44], CBR1 positively affects neuronal cell survival and confers 

protection against oxidative stress-induced brain degeneration. For all these, as highlighted by 

Bousova et al [24], the potential of polyphenols (or other naturally occurring molecules) to interfere 

with CBR1 activity may lead to an alteration of cell homeostasis. These considerations, together 

with the observed pro-oxidant action of polyphenols [45], suggest a balanced dietary intake of these 

molecules for healthy subjects. 

 

4. Conclusions 

In conclusion, the ability of hCBR1 to efficiently catalyze the reduction of glutathionylated 

aldehydes derived from lipid peroxidation, that in the case of glutathionylated-4-hydroxyalkanals is 

associated to the ability to oxidize the hemiacetal hydroxyl group, strengthens the pivotal role of 

this enzyme in cell detoxification. This confirms CBR1 as an enzymatic target whose inhibition 

may be relevant in favorably intervening in pathological situations. 
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Figure 1. Schematic representation of GSHNE disproportion catalyzed by CBR1. 1: GSHNE 

free aldehyde; 2: GSHNE hemiacetal; 3: 3-GS-1,4-dihydroxynonane; 4: 3-GS-γ-nonano lactone. 

 

 

 

Figure 2. Time course of the hCBR1 catalyzed reduction of glutathionylated aldehydes. The 

absorbance at 340 nm is reported as a function of time. In a 50 mM sodium phosphate buffer pH 

6.2, the assay mixtures contained 20 µM NADPH, 94 mU/ml of hCBR1 and 30 µM of either 

GSHNE (curve 1) or GSHHE (curve 2). Curves 3 and 4 refer to incubation mixtures as above, 

containing 30 µM GS-nonanal as substrate and 4 and 14 mU/ml of hCBR1, respectively. The 



contribution to the decrease in absorbance due to the spontaneous NADPH degradation  in the 

absence of substrate (dotted line) was taken into account and subtracted from each curve. Results 

superimposable to curves 1 and 2 were obtained when the substrate concentration was raised to 70 

µM.  

 

 

 

 

Figure 3. Kinetic analysis of the reductase activity of hCBR1. The reductase activity of hCBR1 

was evaluated at 37°C in a 50 mM sodium phosphate buffer pH 6.2, containing 0.18 mM NADPH, 

94 mU/ml of hCBR1 and the indicated concentrations of either 9,10 phenantrenequinone (Panel A) 

or GS-nonanal (GSNA) Panel B).  

 


