
Edible vegetables as a source of aldose reductase differential inhibitors  

Francesco Balestri1, Carlo Sorce1,2, Roberta Moschini1,2, Mario Cappiello1,2, Livia Misuri1,3 

Antonella Del Corso1,2 and Umberto Mura*1,2. 

 

1University of Pisa, Department of Biology, Pisa, Italy; 

2Interdepartmental Research Center Nutrafood ‘‘Nutraceuticals and Food for Health’’, University of 

Pisa, Pisa, Italy 

3PhD student of the Tuscany Region PhD School in Biochemistry and Molecular Biology  

*Corresponding author: Umberto Mura, Department of Biology, Biochemistry Unit, Via S. 

Zeno,51, 56126, Pisa, Italy; Tel: 39. 050.2211451; Fax: 39.050.2211460; E-mail: 

umberto.mura@unipi.it 

 

Acknowledgments  

This work was supported by Regione Toscana (Italy), Progetto IDARA. 

 

Key words: aldo-keto reductases; aldose reductase; differential inhibitors; Phaseolus vulgaris; 

functional foods.  

 

 

Abbreviations 

AR, aldose reductase; ARIs, aldose reductase inhibitors; ARDIs, aldose reductase differential 

inhibitors; HNE, trans-4-hydroxy-2,3-nonenal; DTT, D,L-dithiothreitol; hAR, human placental 

recombinant aldose reductase; GAL, D,L-glyceraldehyde; EDTA, ethylenediaminetetraacetic 

disodium salt; BSA, bovine serum albumin.  

 

 

 

Abstract 

The hyperactivity of aldose reductase (AR) on glucose in diabetic conditions or on glutathionyl-

hydroxynonenal in oxidative stress conditions, the source of cell damage and inflammation, appear 

to be balanced by the detoxifying action exerted by the enzyme. This detoxification acts on 

cytotoxic hydrophobic aldehydes deriving from membrane peroxidative processes. This may 

contribute to the failure in drug development for humans to favorably intervene in diabetic 

complications and inflammation, despite the specificity and high efficiency of several available 
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aldose reductase inhibitors. This paper presents additional features to a previously proposed 

approach, on inhibiting the enzyme through molecules able to preferentially inhibit the enzyme 

depending on the substrate the enzyme is working on. These differential inhibitors (ARDIs) should 

act on glucose reduction catalyzed by AR without little or no effect on the reduction of alkenals or 

alkanals. The reasons why AR may be an eligible enzyme for differential inhibition are considered. 

These mainly refer to the evidence that, although AR is an unspecific enzyme that recognizes 

different substrates such as aldoses and hydrophobic aldehydes, it nevertheless displays a certain 

degree of specificity among substrates of the same class. After screening on edible vegetables, 

indications of the presence of molecules potentially acting as ARDIs are reported. 

 

 

Introduction 

More than 50 years have passed since the hyperosmotic theory of the galactose-induced cataract 

linked to aldose reductase activity was first proposed [1]. At that time, it really looked  like a short 

cut to finding tools to counteract diabetic complications. In fact, as formulated, the control of polyol 

formation through AR inhibition, appeared to be a logical intervention in secondary complications 

of diabetes. Besides the osmotic stress, other damaging events may be associated with an enhanced 

flux of the polyol pathway. These include a substantial alteration of the physiological ratios of the 

redox couples of both NAD and NADP, with a consequent decrease in antioxidant defense ability 

[2] and, finally, a potential increase in protein glycation phenomena due to an increase in fructose 

levels [3-5].  

It thus appeared reasonable that AR needed to be inhibited and great experimental efforts began  

which are still on-going [6]. Indeed, hundreds of ARIs have been characterized but no significant 

drug development has followed. The case of Sorbinil, which did not pass clinical trials is 

emblematic [7] as is the withdrawal of Tolrestat-based drugs from distribution [8]. Today, to our 

knowledge, except for some eastern countries where Epalrestat-based drugs have been 

commercialized,  no ARI-based drugs are used for human care in the West.  

There may be several  reasons for such a failure, from the lack of bioavailability of the drug to the 

severe side effects, however they may also be somehow related to the catalytic features of the 

enzyme itself, as AR can reduce toxic aldehydes derived from lipid peroxidative processes [9, 10]. 

Thus, unlike the potential damage of increasing the polyol pathway flux, the removal of 4-hydroxy-

2-nonenal (HNE), a significant product in membrane peroxidative processes, and other alkanals and 

alkenals, must be considered as a detoxifying function of the enzyme [11]. In addition, the ability of 

the AR to reduce glutathionyl-hydroxynonenal (GSHNE), the most important HNE derivative, 



highlights a link between AR activity and the pro-inflammatory cell response [10, 12, 13]. It is 

therefore not easy to predict the overall effect of the enzyme inhibition.  

A change in the approach to the enzyme inhibition has recently been proposed, that has moved 

away to a certain extent from the search for extreme inhibitory power in ARIs, but aimed at 

specifically intervening in the reaction that the enzyme is catalyzing in a differential manner [14]. 

Consequently, differential inhibitors, ARDIs, as these molecules were called, should intervene in 

glucose and or GSHNE reduction, with no or a reduced effect on HNE and other alkanal/alkenal 

reduction.  

The potential of inhibitors to act as ARDIs is linked to their inhibition model, as the targeting of the 

free enzyme (i.e. a competitive type of inhibition) is an important feature of these molecules. While 

a mixed type of differential inhibition, especially when the targeting on the free enzyme is the 

process preferred, is still able to differentially affect the transformation of the two agonist 

substrates, uncompetitive differential inhibitors cannot exert any differential inhibitory action [15]. 

This paper, revisiting previous observations on AR substrate specificity features, deals with the 

rational explanation as to why AR is an eligible target for differential inhibition. Preliminary, 

though important indications of edible vegetables as potential ARDIs sources are reported. 

 

2-Materials and Methods 

2.1 Materials. Bovine serum albumin (BSA), D,L-dithiothreitol (DTT),D,L-glyceraldehyde (GAL), 

EDTA, were purchased from Sigma-Aldrich (Saint Louis, MO, USA). NADPH, L-idose, D-glucose 

and L-glucose were supplied by Carbosynth (Compton, England); YM10 ultrafiltration membranes 

were obtained from Merck-Millipore (Darmstad, Germany); HNE was prepared as previously 

described [16]. All other chemicals were of reagent grade. Dry beans of the yellow Zolfino landrace 

were obtained from “Agostinelli Mario” farm in Leccio-Reggello (Florence, Italy); “Costoluto 

fiorentino” tomato (Solanum lycopersicum) and  “Black” cabbage (Brassica oleracea var. 

sabellica) were obtained from the Le Prata farm in S.Giuliano (Pisa, Italy). 

 

2.2 Assay of aldose reductase. 

The activity of AR was determined at 37°C as previously described [17], following the decrease in 

absorbance at 340 nm due to NADPH oxidation (ε340 = 6.22 mM-1.cm-1). The standard assay mixture 

contained a 0.25 M sodium phosphate buffer pH 6.8, 0.18 mM NADPH, 2.4 M ammonium sulfate, 

0.5 mM EDTA and 4.7 mM GAL. One unit of enzyme activity is the amount that catalyzes the 

conversion of 1 µmol of substrate/min in the above assay conditions. These assay conditions were 



also adopted to evaluate the effectiveness as inhibitors of the vegetable extracts when either 0.6 mM 

L-idose, or 0.04 mM HNE, were used as a substrate instead of GAL. 

 

2.3 Purification of human recombinant AR. 

The hAR was expressed and purified as previously described [18]. The purity of the final enzyme 

preparation was assessed by SDS-PAGE [19] and gels were stained with silver nitrate [20], which 

showed a unique band corresponding to a molecular weight of approximately 34 KDa. The specific 

activity of purified hAR was 5.3 U/mg. The purified enzyme was  stored at -80 °C in a 10 mM 

sodium phosphate buffer pH 7.0 containing 2 mM DTT and 30% (w/v) glycerol. Before use, the 

enzyme was extensively dialyzed against the 10 mM sodium phosphate buffer pH 7.0.  

 

2.4 Vegetable extract preparation 

Fresh vegetables and dried beans were mechanically disrupted by Ultra-Turrax and extracted by 

80% methanol aqueous solution containing 0.6% (w/v) of acetic acid. The extraction was performed 

by the addition of 5 ml of the above methanol solution per g of the sample. The suspension was 

kept for approximately 5 h at room temperature, centrifuged for 10 min  at 4°C at 7,000xg, and the 

pellet extracted again at 4°C overnight as above. The supernatants of the two centrifugation steps 

were pooled and dried at room temperature by a rotary evaporator. The dried samples were 

suspended in a 10% methanol aqueous solution containing 0.6% (w/v) of acetic acid (2ml/ g 

equivalents of the original sample weight) and filtered through 0.45 µm PTFE membrane filters. An 

aliquot (0.5 ml) was then loaded on a reverse phase HPLC column (Phenomenex Kinetex C18, 250 

x 4.6 mm ID, 5 µm particle size). Elution was performed at a constant flux of 1 ml min-1 for 4 min 

before applying a linear gradient, from 10 to 100% in 23 min, of methanol containing 0.6% acetic 

acid. Fractions of 2 ml were collected. Elution was monitored by an online detector set at 254 nm. 

Corresponding fractions from different runs were pooled, dried by a speedvac apparatus, and 

suspended in water in order to perform AR inhibition assays. 

 

2.5 Other methods. 

The protein concentration was determined according to Bradford [21], using BSA as a standard 

protein.  

Statistical analysis was performed using the two-way ANOVA test operated with Graphpad 6.0 

software.  

 

 



3. Results and Discussion 

3.1 - AR as a target of differential inhibition. 

The possible intra-site differential inhibition of enzymes poses the question as to what the essential 

requirement is for the target enzyme to be susceptible to this kind of inhibitory action. It is clear that 

the differential inhibition strategy to control enzyme activity may take place only for enzymes that 

are able to act on different substrates. However, this is not sufficient to make the enzyme eligible 

for differential inhibition targeting, since the enzyme may specifically recognize a very limited 

portion of different substrate molecules, which is likely to be the one undergoing transformation. 

Thus the lack of substrate specificity for an enzyme is a necessary but not sufficient condition to 

make it susceptible to differential inhibition.  

A strict requirement for an enzyme to be targeted through  differential inhibition is its ability to 

make different interaction pathways available for two agonist substrates, one of which can thus be 

exclusively, or at least differently, interdicted by the inhibitor with respect to the other one. It is 

known that AR is able to act on structurally very different substrates, such as aldoses and 

alkanals/alkenals. However, despite apparently possessing the features of an aldehyde removase, 

AR is not a permissive enzyme. In fact it is able to  display a different degree of catalytic efficiency 

toward substrates of the same class [22, 23]. Clear evidence of this is shown in Table 1, where the 

relative specificity constants for members of two different classes of AR substrates (i.e. highly 

hydrophilic aldoses and hydrophobic alkenals and alkanals) are reported.  

While the specificity constants for hydrophobic substrates are relative to the least efficient one, in 

order to avoid the effect due to possible differences in the free aldehyde form of different aldoses, 

the values for hydrophilic aldoses are reported as the ks ratio of the two D and L enantiomers. For 

both classes of substrates, a significant difference was observed in the efficiency of the enzyme to 

catalyze their reduction, up to approximately 2.5 orders of magnitude for alkanals and alkenals, and 

approximately 50 fold for aldose enantiomers. The case of the D- and L- enantiomeric couples for 

glucose and idose is emblematic as highlighted in Fig. 1. In fact, D-glucose and its epimer at C5, L-

idose, are substrates for AR with a specificity constant of 0.61 and 35.75 mM-1min1, respectively 

[18]. On the other hand, L-glucose and its epimer at C5, D-idose, are both poor substrates for the 

enzyme. The poor effectiveness of L-glucose as substrate [24] makes it hard to kinetically 

characterize this substrate, making the relative specificity constant for the L/D glucose couple 

difficult to be evaluated. On the contrary for D-idose, a kcat of 145.56 ±13.16 min-1and a KM of 

34.45 ± 5.83 mM were measured, with a resulting specificity constant  approximately one order of 

magnitude lower with respect to L-idose (Table 1). 



These data suggest that a special recognition pattern must occur both for aldoses and for 

hydrophobic substrates; these patterns should be specific for each substrate typology and it may be 

possible to envisage specific inhibitors. Another particular aspect that distinguishes the targeting of 

the enzyme while catalyzing the aldose reduction with respect to the hydrophobic aldehyde 

reduction, is the non-hyperbolic inhibition exerted on the enzyme by haemiacetals [25]. In this 

regard it would be advisable to search for differential inhibitors in conditions in which both agonist 

substrates were present. Although it might be a less friendly assay condition with respect to the 

direct monitoring of the absorbance at 340 nm, the double substrate assay approach, while truly 

pairing the assay conditions for both substrates would  reveal possible favorable evidence in the 

search for ARDIs. In fact the differential targeting of one of the two reactions elicits the other 

reaction, because of the removal, or of the attenuation, of the reciprocal competitive inhibition that 

the two agonist substrates exert on each other. 

 

3.2 - Differential inhibitors in edible vegetables.  Although evidence of the susceptibility of AR to 

differential inhibition has been presented using synthetic molecules [14], the search for ARDIs is 

not easy, due to the intrinsic difficulty in finding ARIs with the additional restrictive features 

required for a differential intra-site inhibition. Generally the development of new chemical entities 

into drugs for human use  is a very long and expensive process. Natural products, however, remain 

a valuable alternative in developing drugs, or in generating commercial preparations enriched with 

natural healthy molecules or at least in promoting the use of functional food for human health.  Here 

a first approach in searching for ARDIs in plants is presented. 

Three different edible vegetable species, namely, “Zolfino” bean, a variety of  Phaseolus vulgaris L. 

from Pratomagno, “Costoluto fiorentino” tomato (Solanum lycopersicum) and “Black” cabbage 

(Brassica oleracea var. sabellica), typical of the Tuscany region (Italy), were used to evaluate the 

possible occurrence of ARDIs. The susceptibility to inhibition of AR while catalyzing the reduction 

of either L-idose or HNE by components of methanolic extract fractionation of  Zolfino bean, 

tomato and black cabbage was measured and the results are reported in Fig. 2, Panels A, B and C, 

respectively.  

As expected all three species displayed a significant ability in inhibiting AR, however, a different 

ability to exert differential inhibitory action was observed. In fact, while fractionation of the tomato 

and the Zolfino bean extracts revealed a number of components able to exert differential inhibition 

on L-idose reduction with respect to HNE with a different effectiveness and statistical significance, 

no evidence of differential inhibition appeared among the fractions of the cabbage extracts. The 



Zolfino bean, previously reported as a notable source of ARIs [26] showed a maximal differential 

inhibition of approximately 30% (p < 0.0001), (Fig 1. Panel A lower part, fraction 17).  

While the significant consistency of this value was verified for different chromatographic runs of 

different independent bean extracts, some variability was observed for the tomato analysis. In this 

case although the inhibitory pattern was essentially similar to that reported in Fig. 2, Panel B, an 

over imposition of the specific peaks was difficult. This is likely due to the profile complexity in the 

fraction range in which differential inhibition is observed (fractions 11-16, Fig. 2, Panel B,). Thus 

the number of not well resolved components all able to inhibit the enzyme, may lead to an 

underestimation of ARDI efficiency.  

Finally, it is worth noting  that for both Zolfino bean and cabbage (Fig. 2, Panel A, fraction 11 and 

Panel C, fraction 9, respectively), a differential inhibition with a preferential targeting of HNE 

reduction with respect to aldose reduction was observed.  Despite the modest statistical significance 

(p < 0.05), this differential effect accounted for  approximately 35% and 25%,  for cabbage and 

Zolfino, respectively. Although possibly not matching the favorable effects for ARDIs that were 

being searched for, this evidence, as previously reported for synthetic inhibitors [14], supports the 

potential of AR to be differentially inhibited. 

 

To conclude, from this preliminary attempt to search for differential inhibitors in edible plants, we 

believe that there is potentially a new field of investigation. Besides providing a new means of 

controlling aldose reductase activity, this approach may also be used to reveal how certain foods, 

highly valuable due to their potentially useful nutraceutical character, may favorably intervene in 

pathology states linked to the hyperactivity of AR towards specific substrates. 
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Figure legends 

 

Figure 1 Direct comparison between D- and L-glucose and D- and L-idose as substrates of hAR.  

Panel A. Reaction rates as a function of the concentration of either D-glucose () or L-glucose (), 

used as substrates for hAR in the presence of 20 mU of enzyme in the assay mixture. Panel B. 

Reaction rates as a function of the concentration of either D-idose () or L-idose (▲), used as 

substrates for hAR in the presence of 8 mU of enzyme in the assay mixture. Error bars (when not 

visible are within the symbol size) represent the standard deviations of the mean from at least three 

independent measurements. 

 

 

Figure 2 Vegetable extract fractionation and AR differential inhibition 

Each panel refers to the HPLC chromatographic separation profiles  (upper part) and to the 

percentage of inhibition exerted by individual fractions (lower part) on the L-idose (black 

histograms) and HNE (dashed histograms) reduction. Panels A, B and C, refer to the Zolfino bean, 

tomato and cabbage fractionation, respectively. Eight mU of hAR were used in the assay. The 

amount of material used to evaluate the inhibitory ability of each fraction was 1.1, 8.5 and 0.75 mg 

equivalent of the starting vegetable for Zolfino bean, tomato and cabbage, respectively. Error bars 

(when not visible are within the symbol size) represent the standard deviations of the mean from at 

least three independent measurements. The statistical significance of % differential inhibition  on L-

idose reduction with respect to HNE reduction is reported as: **** p<0.0001; *** p<0.0002, ** 

p<0.001 and * p< 0.05. 

  



Tab.1 – Relative catalytic efficiency of AR in reducing different classes of substrates 

 

Hydrophobic aldehydes  

ks
a
 

min
-1

mM
-1 

 

Relative ks
d 

 

Aldoses 

ks 

min
-1

mM
-1 

Relative ks
e 

ks(L)/ ks(D) 

propanal 5.5 1.0 D-glyceraldehyde 1,860b  

butanal 439 79.8 L-glyceraldehyde 6,840b 3.68 

hexanal 3,657 664.9 D-threose 114b  

nonanal  1,157 210.4 L-threose 276b 2.42 

trans-2-pentenal 61.7 11.2 D-arabinose 0.24b  

trans-2-nonenal 2,058 374.2 L-arabinose 10.8b 49.44 

4-hydroxy trans-2-pentenal 199 36.2 D-xylose 8.4 b  

4-hydroxy trans-2-nonenal 921 167.4 L-xylose 0.48b 0.057 

trans,trans-2,4-hesadienal 139 25.3 D-idose 4.20c  

trans,trans-2,4-nonadienal 561 102.0 L-idose 35.75c 8.51 

trans-4-decenal 1,108 201.4 D-glucose 0.61c  

cis-4-decenal 862 156.7 L-glucose n.d n.d. 

 

aData refer to  [22]; bData refer to  [23]; cData refer to  [18]; dRelative ks, refers to the ratio between the 

specificity constant of the indicated substrate and propanal; eRelative ks, refers to the ratio between the 

specificity constant of the L and D enantiomers of each aldose; n.d. stands for undetectable. 
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