32 research outputs found

    Field-resolved infrared spectroscopy

    Get PDF

    A comparison of inverted and upright laser-activated titanium nitride micropyramids for intracellular delivery

    Get PDF
    The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior molecules to enter the cell via diffusion. Various established delivery methods, including electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity, respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 degrees C and 307 degrees C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine

    Exacerbated Innate Host Response to SARS-CoV in Aged Non-Human Primates

    Get PDF
    The emergence of viral respiratory pathogens with pandemic potential, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza A H5N1, urges the need for deciphering their pathogenesis to develop new intervention strategies. SARS-CoV infection causes acute lung injury (ALI) that may develop into life-threatening acute respiratory distress syndrome (ARDS) with advanced age correlating positively with adverse disease outcome. The molecular pathways, however, that cause virus-induced ALI/ARDS in aged individuals are ill-defined. Here, we show that SARS-CoV-infected aged macaques develop more severe pathology than young adult animals, even though viral replication levels are similar. Comprehensive genomic analyses indicate that aged macaques have a stronger host response to virus infection than young adult macaques, with an increase in differential expression of genes associated with inflammation, with NF-κB as central player, whereas expression of type I interferon (IFN)-β is reduced. Therapeutic treatment of SARS-CoV-infected aged macaques with type I IFN reduces pathology and diminishes pro-inflammatory gene expression, including interleukin-8 (IL-8) levels, without affecting virus replication in the lungs. Thus, ALI in SARS-CoV-infected aged macaques developed as a result of an exacerbated innate host response. The anti-inflammatory action of type I IFN reveals a potential intervention strategy for virus-induced ALI

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring

    Get PDF
    Health state transitions are reflected in characteristic changes in the molecular composition of biofluids. Detecting these changes in parallel, across a broad spectrum of molecular species, could contribute to the detection of abnormal physiologies. Fingerprinting of biofluids by infrared vibrational spectroscopy offers that capacity. Whether its potential for health monitoring can indeed be exploited critically depends on how stable infrared molecular fingerprints (IMFs) of individuals prove to be over time. Here we report a proof-of-concept study that addresses this question. Using Fourier-transform infrared spectroscopy, we have fingerprinted blood serum and plasma samples from 31 healthy, non-symptomatic individuals, who were sampled up to 13 times over a period of 7 weeks and again after 6 months. The measurements were performed directly on liquid serum and plasma samples, yielding a time- and cost-effective workflow and a high degree of reproducibility. The resulting IMFs were found to be highly stable over clinically relevant time scales. Single measurements yielded a multiplicity of person-specific spectral markers, allowing individual molecular phenotypes to be detected and followed over time. This previously unknown temporal stability of individual biochemical fingerprints forms the basis for future applications of blood-based infrared spectral fingerprinting as a multiomics-based mode of health monitoring

    Limits and Prospects of Molecular Fingerprinting for Phenotyping Biological Systems Revealed through <i>In Silico</i> Modeling

    No full text
    Molecular fingerprinting via vibrational spectroscopy characterizes the chemical composition of molecularly complex media which enables the classification of phenotypes associated with biological systems. However, the interplay between factors such as biological variability, measurement noise, chemical complexity, and cohort size makes it challenging to investigate their impact on how the classification performs. Considering these factors, we developed an in silico model which generates realistic, but configurable, molecular fingerprints. Using experimental blood-based infrared spectra from two cancer-detection applications, we validated the model and subsequently adjusted model parameters to simulate diverse experimental settings, thereby yielding insights into the framework of molecular fingerprinting. Intriguingly, the model revealed substantial improvements in classifying clinically relevant phenotypes when the biological variability was reduced from a between-person to a within-person level and when the chemical complexity of the spectra was reduced. These findings quantitively demonstrate the potential benefits of personalized molecular fingerprinting and biochemical fractionation for applications in health diagnostics

    Limits and Prospects of Molecular Fingerprinting for Phenotyping Biological Systems Revealed through <i>In Silico</i> Modeling

    No full text
    Molecular fingerprinting via vibrational spectroscopy characterizes the chemical composition of molecularly complex media which enables the classification of phenotypes associated with biological systems. However, the interplay between factors such as biological variability, measurement noise, chemical complexity, and cohort size makes it challenging to investigate their impact on how the classification performs. Considering these factors, we developed an in silico model which generates realistic, but configurable, molecular fingerprints. Using experimental blood-based infrared spectra from two cancer-detection applications, we validated the model and subsequently adjusted model parameters to simulate diverse experimental settings, thereby yielding insights into the framework of molecular fingerprinting. Intriguingly, the model revealed substantial improvements in classifying clinically relevant phenotypes when the biological variability was reduced from a between-person to a within-person level and when the chemical complexity of the spectra was reduced. These findings quantitively demonstrate the potential benefits of personalized molecular fingerprinting and biochemical fractionation for applications in health diagnostics

    Wall-less Flow Phantoms with 3D printed Soluble Filament for Ultrasonic Experiments

    No full text
    Tissue-mimicking materials (TMMs) typically used for ultrasound phantoms include gelatin, agarose and polyvinyl alcohol (PVA). These materials have shown sufficient similarity in ultrasound parameters compared to human tissue. Despite their extensive use for years to generate ultrasound phantoms, no simple and easily reproducible way to generate complex, wall-less ultrasound flow phantoms has been introduced. Commercially available ultrasound flow phantoms are limited to simple flow geometries that do not reflect the complex blood flow in humans. Flow phantoms with complex geometries presented in scientific publications either have walls between TMMs and the flow channel, are limited to one material, or are complicated to produce. In this contribution, we present a method using 3D printing and soluble filament that allows for the reliable and consistent production of complex flow geometries with the typical materials used for ultrasound phantoms and without any walls
    corecore