40 research outputs found

    Isolation of flavonoids from Anemopaegma arvense (Vell) Stellf. ex de Souza and their antifungal activity against Trichophyton rubrum

    Get PDF
    Anemopaegma arvense pertence Ă  famĂ­lia Bignoniaceae, sendo conhecida popularmente como Catuaba. Para avaliação de sua atividade citotĂłxica e antimicrobiana, a fração cromatogrĂĄfica F3 e os flavonoides 1 (quercetina 3-O-α-L-ramnopiranosil-(1→6)-β-D-glucopiranosĂ­deo) (rutina) e flavonoide 2 (quercetina 3-O-α-L-ramnopiranosil-(1→6)-β-D-galactopiranosĂ­deo) foram isolados das folhas de A. arvense. A fração 3 e os flavonoides nĂŁo apresentaram atividade antibacteriana. Nenhuma atividade citotĂłxica foi observada para a fração F3 e para os flavonoides, quando avaliados contra as cĂ©lulas tumorais em teste. Entretanto, e considerando a atividade antifĂșngica, o flavonĂłide 1 apresentou valor de concentração inibitĂłria mĂ­nima (CIM) de 0,5 mg/mL, enquanto o flavonĂłide 2, CIM de 0,25 mg/mL contra as cepas selvagem e mutante de Trichophyton rubrum, demonstrando, pela primeira vez, que os flavonoides isolados possuem atividade antifĂșngica, o que valida a mesma atividade para A. arvense.Anemopaegma arvense (Vell) Stellf. ex de Souza belongs to the family Bignoniaceae, and is popularly known as catuaba. To evaluate the cytotoxic and antimicrobial activity of A. arvense, fraction F3 and flavonoids 1 (quercetin 3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside) (rutin) and flavonoid 2 (quercetin 3-O-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside) were isolated from the leaves of this plant. Fraction F3 and flavonoids 1 and 2 exhibited no antibacterial activity. Furthermore, no cytotoxic activity of fraction 3 or flavonoids 1 and 2 was observed against the tumor cells tested. However, analysis of the antifungal activity of flavonoids 1 and 2 revealed minimum inhibitory concentrations of 0.5 and 0.25 mg/mL, respectively, against the Trichophyton rubrum strains tested (wild type and mutant). This study demonstrates for the first time the antifungal activity of isolated flavonoids, validating the same activity for A. arvense

    Cytotoxic effects of essential oils from three Lippia gracilis Schauer genotypes on HeLa, B16, and MCF-7 cells and normal human fibroblasts

    Get PDF
    This study aimed to evaluate the chemical composition of the essential oils from three genotypes of Lippia gracilis Schauer (Verbenaceae) and investigate the cytotoxic activities of these oils. Essential oils were extracted from the leaves using a Clevenger-type apparatus, and chemical analysis was performed using a gas chromatograph coupled to a mass spectrometer and flame ionization detector. 3T3, MRC5, B16, HeLa, and MCF-7 cell lines were used to study the in vitro cytotoxicity of the essential oils, and the level of cell death was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test with three replicates. The cytotoxic activity was expressed as the concentration that inhibited 50% of cell growth. The main compound in the essential oil of LGRA-106 was thymol (40.52%), while LGRA-109 and LGRA-201 contained 45.84 and 32.60% carvacrol, respectively, as their major compound. The essential oils of L. gracilis showed cytotoxic activity against both normal and tumor cells at concentrations below 100 ÎŒg/mL; this demonstrated the antitumor potential of these essential oils, which should be further investigated

    Quantitative Analysis of the Relative Transcript Levels of ABC Transporter Atr Genes in Aspergillus nidulans by Real-Time Reverse Transcription-PCR Assay

    No full text
    The development of assays for quantitative analysis of the relative transcript levels of ABC transporter genes by real-time reverse transcription-PCR (RT-PCR) might provide important information about multidrug resistance in filamentous fungi. Here, we evaluate the potential of real-time RT-PCR to quantify the relative transcript levels of ABC transporter Atr genes from Aspergillus nidulans. The AtrA to AtrD genes showed different and higher levels in the presence of structurally unrelated drugs, such as camptothecin, imazalil, itraconazole, hygromycin, and 4-nitroquinoline oxide. We also verified the relative transcript levels of the Atr genes in the A. nidulans imazalil-resistant mutants. These genes displayed a very complex pattern in different ima genetic backgrounds. The imaB mutant has higher basal transcript levels of AtrB and -D than those of the wild-type strain. The levels of these two genes are comparable when the imaB mutant is grown in the presence and absence of imazalil. The imaC, -D, and -H mutants have higher basal levels of AtrA than that of the wild type. The same behavior is observed for the relative transcript levels of AtrB in the imaG mutant background

    The Transcriptional Regulation of Genes Involved in the Immune Innate Response of Keratinocytes Co-Cultured with <i>Trichophyton rubrum</i> Reveals Important Roles of Cytokine GM-CSF

    No full text
    Trichophyton rubrum is the most causative agent of dermatophytosis worldwide. The keratinocytes are the first line of defense during infection, triggering immunomodulatory responses. Previous dual RNA-seq data showed the upregulation of several human genes involved in immune response and epithelial barrier integrity during the co-culture of HaCat cells with T. rubrum. This work evaluates the transcriptional response of this set of genes during the co-culture of HaCat with different stages of T. rubrum conidia development and viability. Our results show that the developmental stage of fungal conidia and their viability interfere with the transcriptional regulation of innate immunity genes. The CSF2 gene encoding the cytokine GM-CSF is the most overexpressed, and we report for the first time that CSF2 expression is contact and conidial-viability-dependent during infection. In contrast, CSF2 transcripts and GM-CSF secretion levels were observed when HaCat cells were challenged with bacterial LPS. Furthermore, the secretion of proinflammatory cytokines was dependent on the conidia developmental stage. Thus, we suggest that the viability and developmental stage of fungal conidia interfere with the transcriptional patterns of genes encoding immunomodulatory proteins in human keratinocytes with regard to important roles of GM-CSF during infection

    Trans-chalcone suppresses tumor growth mediated at least in part by the induction of heme oxygenase-1 in breast cancer

    No full text
    Despite intensive research efforts in recent decades, cancer remains a leading cause of death worldwide. The chalcone family is a promising group of phytochemicals for therapeutic use against cancer development. Naturally-occurring chalcones, as well as synthetic chalcone analogues, have shown many beneficial biological properties, including anti-inflammatory, antioxidant, and anti-cancer activities. In this report, trans-chalcone (TChal) was found to increase cell death in breast cancer cells, assessed using high content screening. Subsequently, using antibody array analysis, TChal was found to increase heme oxygenase-1 (HO-1) expression in TChal-treated breast cancer cells. Blocking of HO-1 by siRNA in breast cancer cells diminished the effect of TChal on cell growth inhibition. TChal-fed mice also showed less tumor growth compared to vehicle-fed mice. Overall, we found that TChal increases HO-1 expression in breast cancer cells, thereby enhancing anti-tumorigenesis. Our results suggest that HO-1 expression could be a potential new target of TChal for anti-tumorigenesis in breast cancer.N

    Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    Get PDF
    Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 ”g/mL, resp.). Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 ”M to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets
    corecore