283 research outputs found

    The s-process in stellar population synthesis: a new approach to understanding AGB stars

    Get PDF
    Thermally pulsating asymptotic giant branch (AGB) stars are the main producers of slow neutron capture (s-) process elements, but there are still large uncertainties associated with the formation of the main neutron source, 13C, and with the physics of these stars in general. Observations of s-process element enhancements in stars can be used as constraints on theoretical models. For the first time we apply stellar population synthesis to the problem of s-process nucleosynthesis in AGB stars, in order to derive constraints on free parameters describing the physics behind the third dredge-up and the properties of the neutron source. We utilize a rapid evolution and nucleosynthesis code to synthesize different populations of s-enhanced stars, and compare them to their observational counterparts to find out for which values of the free parameters in the code the synthetic populations fit best to the observed populations. These free parameters are the amount of third dredge-up, the minimum core mass for third dredge-up, the effectiveness of 13C as a source of neutrons and the size in mass of the 13C pocket. We find that galactic disk objects are reproduced by a spread of a factor of two in the effectiveness of the 13C neutron source. Lower metallicity objects can be reproduced only by lowering by at least a factor of 3 the average value of the effectiveness of the 13C neutron source needed for the galactic disk objects. Using observations of s-process elements in post-AGB stars as constraints we find that dredge-up has to start at a lower core mass than predicted by current theoretical models, that it has to be substantial (λ\lambda >~ 0.2) in stars with mass M <~ 1.5 M_sun and that the mass of the 13C pocket must be about 1/40 that of the intershell region.Comment: 16 pages, 15 figures, accepted for publication in Astronomy & Astrophysic

    Physical, Nutrient, and Biological Measurements of Coastal Waters off Central California in March 2012

    Get PDF
    The results of analyses of hydrographic, nutrient, and biological data collected in coastal ocean waters off Central California in March 2012 aboard the R/V Point Sur are presented in both tabular and graphical form. The cruise departed from Moss Landing, California, and proceeded offshore along CalCOFI Line 67 to station 90. Additionally, ancillary Expendable Bathythermograph (XBT), Advanced Very High Resolution Radiometer (AVHRR) satellite imagery, Acoustic Doppler Current Profiler (ADCP), and Underway Data Acquisition System (UDAS) meteorological and surface oceanographic data are also included in this report. The CTD and XBT data can be found on the NODC Website with accession #0098772

    Triggering Mechanisms for Motor Actions: The Effects of Expectation on Reaction Times to Intense Acoustic Stimuli

    Get PDF
    Motor actions can be released much sooner than normal when the go-signal is of very high intensity (&gt;100 dBa). Although statistical evidence from individual studies has been mixed, it has been assumed that sternocleidomastoid (SCM) muscle activity could be used to distinguish between two neural circuits involved in movement triggering. We summarized meta-analytically the available evidence for this hypothesis, comparing the difference in premotor reaction time (RT) of actions where SCM activity was elicited (SCM+ trials) by loud acoustic stimuli against trials in which it was absent (SCM- trials). We found ten studies, all reporting comparisons between SCM+ and SCM- trials. Our mini meta-analysis showed that premotor RTs are faster in SCM+ than in SCM- trials, but the effect can be confounded by the variability of the foreperiods employed. We present experimental data showing that foreperiod predictability can induce differences in RT that would be of similar size to those attributed to the activation of different neurophysiological pathways to trigger prepared actions. We discuss plausible physiological mechanisms that would explain differences in premotor RTs between SCM+ and SCM- trials

    Psychophysical stress disturbs expression of mitochondrial biogenesis markers in hypothalamus and adenohypophysis

    Get PDF
    Summary. Although psychophysical stress is widespread in human society and a major contributor to a range of pathological conditions, it is not known if this form of stress regulates mitochondrial biogenesis in the hypothalamus or adenohypophysis, the main organs involved in compensatory specifc response of the organism to stress (so called “fght or flight” response). Accordingly, this study was designed to evaluate the effects of acute and repeated psychophysical stress on a profle of mitochondrial biogenesis markers in the hypothalamus and adenohypophysis. Rats were either lef undisturbed (freely moving, control group) or exposed to psychophysical stress by immobilization (IMO) for 2 h (acute, 1xIMO) or 2 h daily for 2 (repeated, 2xIMO) or 10 consecutive days (repeated, 10xIMO). Result suggest that all types of immobilization stress signifcantly increase expression of hypothalamic NRF1 (nuclear respiratory factor 1; acts on the genes for subunits of the OXPHOS encoded by the nuclear genome) as well as its downstream target TFAM (mitochondrial transcription factor A), the essential ubiquitous factors for mtDNA replication and expression. In the same samples, TFB1M (markedly enhance mtDNA transcription) significantly decreased, while the level of COX4 (mitochondrial complex IV cytochrome C oxidase) protein was reduced only in hypothalamuses isolated from repeatedly stressed rats. Independently of the type of stress, the level of PGC1 protein, the master regulator of mitochondrial biogenesis involved in transcriptional control of all processes related to mitochondrial homeostasis and integrator of environmental signals, remained unchanged. In adenohypophyses of the same animals, 10xIMO signifcantly increased expression of adenohypophyseal PGC1 as well as its downstream target TFB1M, while NRF1 and TFAM remained unchanged. Similarly to hypothalamuses, the level of COX4 protein was reduced in adenohypophyses isolated from repeatedly stressed rats. Our results provide new molecular insights into the relationship between stress and hypothalamo-adenohypophyseal axis, as well as mitochondrial biology

    Orbital eccentricities of binary systems with a former AGB star

    Full text link
    Many binary stellar systems in which the primary star is beyond the asymptotic giant branch (AGB) evolutionary phase show significant orbital eccentricities whereas current binary interaction models predict their orbits to be circularised. We analyse how the orbital parameters in a system are modified under mass loss and mass exchange among its binary components and propose a model for enhanced mass-loss from the AGB star due to tidal interaction with its companion, which allows a smooth transition between the wind and Roche-lobe overflow mass-loss regimes. We explicitly follow its effect along the orbit on the change of eccentricity and orbital semi-major axis, as well as the effect of accretion by the companion. We calculate timescales for the variation of these orbital parameters and compare them to the tidal circularisation timescale. We find that in many cases, due to the enhanced mass loss of the AGB component at orbital phases closer to the periastron, the net eccentricity growth rate in one orbit is comparable to the rate of tidal circularisation. We show that with this eccentricity enhancing mechanism it is possible to reproduce the orbital period and eccentricity of the Sirius system, which under the standard assumptions of binary interaction is expected to be circularised. We also show that this mechanism may provide an explanation for the eccentricities of most barium star systems, which are expected to be circularised due to tidal dissipation. By proposing a tidally enhanced model of mass loss from AGB stars we find a mechanism which efficiently works against the tidal circularisation of the orbit, which explains the significant eccentricities observed in binary systems containing a white dwarf and a less evolved companion, such as Sirius and systems with barium stars.Comment: 9 pages, 5 figures, accepted for publication in Astronomy and Astrophysics on 24th of October of 200

    Structure and solvents effects on the optical properties of sugar-derived carbon nanodots

    Get PDF
    We greatly acknowledge funding by the Materials Research Institute,BBSRC (grant number BB/J001473/1) and an Imperial College Research Fellowship (AEG

    Effects of the 1997-1999 El Niño and La Niña

    Get PDF
    Abstract Zooplankton abundance and euphausiid community composition were sampled seasonally (spring, summer, fall) within Monterey Bay, California, between 1997 and 1999. Measurements of sea surface temperature (SST), mixed layer depth, and upwelling indices provided concurrent data on physical oceanographic parameters. Both total zooplankton and krill abundance dramatically declined in the summer of 1997 coincident with a rapid increase in SST and mixed layer depth. Changes in euphausiid community composition occurred in concert with the decline in overall abundance. The relative abundance of the southern neritic Nyctiphanes simplex increased from August to November in 1997, the abundance of cold temperate Euphausia pacifica decreased significantly, and that of the northern neritic Thysanoessa spinifera declined dramatically. The sudden appearance of an adult cohort of N. simplex in July 1997 suggests that rapid poleward flow characteristic of coastally trapped Kelvin waves occurred between June and July of 1997. The persistent presence of warm temperate and subtropical taxa in samples collected between August 1997 and October 1998 indicates that this poleward flow continued in 1998. Zooplankton abundance, euphausiid community composition, and physical oceanographic parameters gradually returned to a more typical upwelling-dominated state in the spring and summer of 1998. E. pacifica and T. spinifera abundances gradually increased during the summer and fall of 1998, while N. simplex abundance abruptly declined in the spring of 1998. However, this recovery was confined to a narrow coastal band as a result of the onshore movement of the oceanic waters of the California Current. This was reflected by higher than normal numbers of the oceanic Nematoscelis difficilis within samples collected during the spring and summer of 1998. By the spring and summer of 1999, both zooplankton and euphausiid abundance had increased to the highest levels recorded during the 3-year study. Both E. pacifica and T. spinifera abundance increased relative to 1998 while N. simplex was completely absent in all samples. These changes reflected the cooler, highly productive environmental conditions associated with th

    IRAS08281-4850 and IRAS14325-6428: two A-type post-AGB stars with s-process enrichment

    Full text link
    One of the puzzling findings in the study of the chemical evolution of (post-)AGB stars is why very similar stars (in terms of metallicity, spectral type, infrared properties, etc...) show a very different photospheric composition. We aim at extending the still limited sample of s-process enriched post-AGB stars, in order to obtain a statistically large enough sample that allows us to formulate conclusions concerning the 3rd dredge-up occurrence. We selected two post-AGB stars on the basis of IR colours indicative of a past history of heavy mass loss: IRAS08281-4850 and IRAS14325-6428. They are cool sources in the locus of the Planetary Nebulae (PNe) in the IRAS colour-colour diagram. Abundances of both objects were derived for the first time on the basis of high-quality UVES and EMMI spectra, using a critically compiled line list with accurate log(gf) values, together with the latest Kurucz model atmospheres. Both objects have very similar spectroscopically defined effective temperatures of 7750-8000K. They are strongly carbon and s-process enriched, with a C/O ratio of 1.9 and 1.6, and an [ls/Fe] of +1.7 and +1.2, for IRAS08281 and IRAS14325 resp. Moreover, the spectral energy distributions (SEDs) point to heavy mass-loss during the preceding AGB phase. IRAS08281 and IRAS14325 are prototypical post-AGB objects in the sense that they show strong post 3rd dredge-up chemical enrichments. The neutron irradiation has been extremely efficient, despite the only mild sub-solar metallicity. This is not conform with the recent chemical models. The existence of very similar post-AGB stars without any enrichment emphasizes our poor knowledge of the details of the AGB nucleosynthesis and dredge-up phenomena. We call for a very systematic chemical study of all cool sources in the PN region of the IRAS colour-colour diagram.Comment: 8 pages, 6 figures, accepted by A&

    Robust Humoral and Cellular Immune Responses to Pertussis in Adults After a First Acellular Booster Vaccination

    Get PDF
    IntroductionTo reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age.MethodsIn 2014, healthy adults aged 25–29 years (n = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model.ResultsUpon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years.ConclusionThe Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy
    • …
    corecore